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1 Introduction

A shape has many applications in a wide range of research fields. Mathemati-
cally important are understanding shape-related quantities, such as the area of
a region, the length of a curve, the (weighted) moment of a shape, etc. In this
talk, a shape perturbation is performed in tha manner of Gateaux derivative.
Especially, an explicit formula for the gradient of an area is presented.

2 Shape representation

Let z(-) be a 2w-periodic parametrization of a smooth Jordan curve 9D in C.
Since z is smooth and periodic, we have the Fourier series expansion of z.

Z(S) = Z énwn(s) )

nez

where @, (s) 1= \/%7 exp(ins). Note that {¢,} is a CONS of L?(S*; C).
We define by A the area of a region D whose boundary 0D is equipped with

its parametrization z.
A(z) = // 1dz; dzs, (1)
D

where 2 = 21 + izo. We now formulate this in a manner of Fourier series. We
apply the Complex Gauss-Green Theorem to (1).
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A(z) :ingZdE




By the way, the area A(z) is a real value. Is (2) “really real”? We can easily
check it by rewriting (2) with Fourier series.

i/
A(z) = §<z, z’>22
T,
= §<z,znz>g2
1,
= 5(2,712)@2 eR.
Furthermore, it claims that the area A(z) does not depend on the Fourier coeffi-

cient Zg which is just the “center” of the region. (Note that A is in fact a signed
area, which is especially pointed out by the formula A(z(s)) = —A(z(-s)).)

3 Shape perturbation

Since the area is written in the form of L? norm, we obtain a perturbation
formula in a form of L? inner product.

A(z1) — A(z2) =

[<Zl7 Z,1>L2 - <227 Zé>L2]

[(21— 22+ 22, (21 — 22 + 22)") > — (22, 29) 2]

N = N =N =

[(z1 = 22, (21 — 22)") + 20 Im(21 — 22, 25)]

~ —Im(z — 22,2’§> as |lz1 — Z2HH1 — 0.

More rigorously speaking, this is a Gateaux derivative, which is a generalized
directional derivative, of the area function A: H' — R.

d
dA(z; Az) :i= — A(z + hAz)
dh|,_,
= —Im(Az,2);»
= —Re[—i(Az,2);.]
= <—7:Z/7 AZ>L2(SI;R2) . (3)
Note that we here identify the complex plane (C,Re(:, ")) with 2-dimensional
Euclidean space (RQ, (- ~>R2). We thus have the following “gradient” of the area.

Gradprz(s1,r2) A(z) = —iz’ = (outward normal direction of dD),

which means a perturbation to the outward normal direction causes a shape to
enlarge its area. Using Fourier series, we rewrite (3) as follows.

dA(Z,AZ) = <n27A2>€2(Z;]R2) .



4 Polar coordinates
We consider the case of Polar coordinates. Suppose z is of the following form.
z(s) = Z(r) (s) :=r(s) exp(is) ,

where r is a positive-valued 27-periodic smooth function. Then, we get

= 5(1“ exp(is), ' exp(is) + riexp(is)) -
L. 2

= 5 [irs 7 o,z + I Easn,m)
L[i [*7, 5 5

= 5 |:2/0 (7“2> ds + |T||L2(51;R):|

= Sl
d(Ao Z)(r; Ar) = dA(Z(r) ;dZ(r; Ar))
= Re<—iZ(r)/7 Ar exp(is)>L2(Sl;C)
=Re(—ir' + 1, A7) 1251
= (r, Ar)LQ(Sl;R) ,
Gradpz(g1,p)(AeZ) = 7.

The last formula indicates that a perturbation to the perpendicular direction
Ar € {r}" preserves the area A, where ()" denotes the orthogonal complement
in L?(S'; R). For exmample, if 7 is a constant, this fact means that only
0-mode perturbation cause the area to change since cos(ns) and sin(ns) are
perpendicular to the constant in L2.

5 Application: isoperimetric problem

Let L be the arclength of a Jordan curve dD.

L) = [ 7 ldz(s)] = / 1) s,

We then have the Gateaux derivative of L explicitly as follows.

dL(z; A2) = (G(2), A2) 251,52y » (4)
2\
G(Z) = Grasz(Sl;W) L(Z) = - <Z’|) .

Eq.(4) represents that the curvature-weighted normal direction of a boundary
is the gradient of L.



We consider the isoperimetric problem which is to find a shape of the largest
area whose boundary keeps a certain length. Let zg € H' (Sl; (C) be a frozen
parametrization of a certain Jordan curve 0Dy. Suppose 0Dy is a solution to the
isoperimetric problem. We assume mathematically that, “for any deformation
of 0Dy with keeping its length, an area A must attain a maximum at 0Dg.”

For an arbitrary element Az € H' (S L (C), we take an arbitrary continuous
map (deformation) Z: (—1,1) — H' such that

Owing to Lo Z = const, we have
0=d(LeZ)(a;+1) = (G(Z()),dZ(c; +1)) 12 (51, g2y -
We thus get

dZ(a;+1) € {G(Z()}

where ()L denotes the orthogonal complement in L2 (S L ]RQ). Obviously, this
is a necessary and sufficient condition for Lo Z = const. We especially have the
following at o = 0.

Az e {G(z)}" .
Owing to the assumption, A(Z(«)) attains its maximum at o = 0.
0=d(As 2)(0; +1)
= %<_iz(/)’AZ>L2(Sl;R2) ;
from which it follows
Az e {—iz)}".

Therefore, {G(z)}" C {—iz}}" holds. (This should be shown by density argu-
ment rigorously.) Noting that codim = 1, we conclude

20

/
P |> for some constant C' € R.
0

—Clizl = G(z) = — (
Without loss of generality, we may assume Zy = 0, that is, the center of the
region Dy is at the origin. Taking integration and absolute value, we finally
obtain |Czp| = 1. In other words, a solution 0Dy to the isoperimetric problem
must coincide with a circle.
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