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1 Introduction

A shape has many applications in a wide range of research fields. Mathemati-
cally important are understanding shape-related quantities, such as the area of
a region, the length of a curve, the (weighted) moment of a shape, etc. In this
talk, a shape perturbation is performed in tha manner of Gâteaux derivative.
Especially, an explicit formula for the gradient of an area is presented.

2 Shape representation

Let z(·) be a 2π-periodic parametrization of a smooth Jordan curve ∂D in C.
Since z is smooth and periodic, we have the Fourier series expansion of z.

z(s) =
∑
n∈Z

ẑnϕn(s) ,

where ϕn(s) := 1√
2π

exp(ins). Note that {ϕn} is a CONS of L2
(
S1; C

)
.

We define by A the area of a region D whose boundary ∂D is equipped with
its parametrization z.

A(z) :=

∫∫
D

1 dz1 dz2 , (1)

where z = z1 + iz2. We now formulate this in a manner of Fourier series. We
apply the Complex Gauss-Green Theorem to (1).

A(z) =
i

2

∮
∂D

z dz

=
i

2

∫ 2π

0

z(s) z′(s) ds

=
i

2
〈z, z′〉L2 . (2)
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By the way, the area A(z) is a real value. Is (2) “really real”? We can easily
check it by rewriting (2) with Fourier series.

A(z) =
i

2

〈
ẑ, ẑ′

〉
`2

=
i

2
〈ẑ, inẑ〉`2

=
1

2
〈ẑ, nẑ〉`2 ∈ R .

Furthermore, it claims that the area A(z) does not depend on the Fourier coeffi-
cient ẑ0 which is just the “center” of the region. (Note that A is in fact a signed
area, which is especially pointed out by the formula A(z(s)) = −A(z(−s)).)

3 Shape perturbation

Since the area is written in the form of L2 norm, we obtain a perturbation
formula in a form of L2 inner product.

A(z1)−A(z2) =
i

2
[〈z1, z′1〉L2 − 〈z2, z′2〉L2 ]

=
i

2

[〈
z1 − z2 + z2, (z1 − z2 + z2)

′〉
L2 − 〈z2, z′2〉L2

]
=
i

2

[〈
z1 − z2, (z1 − z2)

′〉
+ 2i Im〈z1 − z2, z′2〉

]
≈ − Im〈z1 − z2, z′2〉 as ‖z1 − z2‖H1 → 0.

More rigorously speaking, this is a Gâteaux derivative, which is a generalized
directional derivative, of the area function A : H1 −→ R.

dA(z; ∆z) :=
d

dh

∣∣∣∣
h=0

A(z + h∆z)

= − Im〈∆z, z′〉L2

= −Re [−i〈∆z, z′〉L2 ]

= 〈−iz′,∆z〉L2(S1;R2) . (3)

Note that we here identify the complex plane (C,Re〈·, ·〉C) with 2-dimensional
Euclidean space

(
R2, 〈·, ·〉R2

)
. We thus have the following “gradient” of the area.

GradL2(S1;R2)A(z) = −iz′ = (outward normal direction of ∂D) ,

which means a perturbation to the outward normal direction causes a shape to
enlarge its area. Using Fourier series, we rewrite (3) as follows.

dA(z; ∆z) = 〈nẑ,∆ẑ〉`2(Z;R2) .
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4 Polar coordinates

We consider the case of Polar coordinates. Suppose z is of the following form.

z(s) = Z(r) (s) := r(s) exp(is) ,

where r is a positive-valued 2π-periodic smooth function. Then, we get

A(Z(r)) =
i

2

〈
Z(r), Z(r)

′〉
L2

=
i

2
〈r exp(is), r′ exp(is) + ri exp(is)〉L2

=
1

2

[
i〈r, r′〉L2(S1;R) + ‖r‖2L2(S1;R)

]
=

1

2

[
i

2

∫ 2π

0

(
r2
)′

ds+ ‖r‖2L2(S1;R)

]
=

1

2
‖r‖2L2 ,

d(A ◦Z)(r; ∆r) = dA(Z(r) ; dZ(r; ∆r))

= Re
〈
−iZ(r)

′
,∆r exp(is)

〉
L2(S1;C)

= Re〈−ir′ + r,∆r〉L2(S1;C)

= 〈r,∆r〉L2(S1;R) ,

GradL2(S1;R)(A ◦Z) = r .

The last formula indicates that a perturbation to the perpendicular direction
∆r ∈ {r}⊥ preserves the area A, where (·)⊥ denotes the orthogonal complement
in L2

(
S1; R

)
. For exmample, if r is a constant, this fact means that only

0-mode perturbation cause the area to change since cos(ns) and sin(ns) are
perpendicular to the constant in L2.

5 Application: isoperimetric problem

Let L be the arclength of a Jordan curve ∂D.

L(z) :=

∫ 2π

0

|dz(s)| =
∫ 2π

0

|z′(s)|ds.

We then have the Gâteaux derivative of L explicitly as follows.

dL(z; ∆z) = 〈G(z),∆z〉L2(S1;R2) , (4)

G(z) := GradL2(S1;R2) L(z) = −
(
z′

|z′|

)′

.

Eq.(4) represents that the curvature-weighted normal direction of a boundary
is the gradient of L.
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We consider the isoperimetric problem which is to find a shape of the largest
area whose boundary keeps a certain length. Let z0 ∈ H1

(
S1; C

)
be a frozen

parametrization of a certain Jordan curve ∂D0. Suppose ∂D0 is a solution to the
isoperimetric problem. We assume mathematically that, “for any deformation
of ∂D0 with keeping its length, an area A must attain a maximum at ∂D0.”

For an arbitrary element ∆z ∈ H1
(
S1; C

)
, we take an arbitrary continuous

map (deformation) Z : (−1, 1) −→ H1 such that

Z(0) = z0 ,

dZ(α; +1) = ∆z ,

L(Z(α)) = const .

Owing to L ◦Z = const, we have

0 = d(L ◦Z)(α; +1) = 〈G(Z(α)),dZ(α; +1)〉L2(S1;R2) .

We thus get

dZ(α; +1) ∈ {G(Z(α))}⊥ ,

where (·)⊥ denotes the orthogonal complement in L2
(
S1; R2

)
. Obviously, this

is a necessary and sufficient condition for L ◦Z = const. We especially have the
following at α = 0.

∆z ∈ {G(z0)}⊥ .

Owing to the assumption, A(Z(α)) attains its maximum at α = 0.

0 = d(A ◦Z)(0; +1)

=
1

2
〈−iz′0,∆z〉L2(S1;R2) ,

from which it follows

∆z ∈ {−iz′0}
⊥
.

Therefore, {G(z0)}⊥ ⊂ {−iz′0}
⊥

holds. (This should be shown by density argu-
ment rigorously.) Noting that codim = 1, we conclude

−Ciz′0 = G(z0) = −
(
z′0
|z′0|

)′

for some constant C ∈ R.

Without loss of generality, we may assume ẑ0 = 0, that is, the center of the
region D0 is at the origin. Taking integration and absolute value, we finally
obtain |Cz0| = 1. In other words, a solution ∂D0 to the isoperimetric problem
must coincide with a circle.
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