Derivative of an area

Tomoki UDA

December 14, 2015

1 Introduction

A shape has many applications in a wide range of research fields. Mathematically important are understanding shape-related quantities, such as the area of a region, the length of a curve, the (weighted) moment of a shape, etc. In this talk, a shape perturbation is performed in tha manner of Gâteaux derivative. Especially, an explicit formula for the gradient of an area is presented.

2 Shape representation

Let $z(\cdot)$ be a 2π-periodic parametrization of a smooth Jordan curve ∂D in \mathbb{C}. Since z is smooth and periodic, we have the Fourier series expansion of z.

$$
z(s)=\sum_{n \in \mathbb{Z}} \hat{z}_{n} \varphi_{n}(s)
$$

where $\varphi_{n}(s):=\frac{1}{\sqrt{2 \pi}} \exp (i n s)$. Note that $\left\{\varphi_{n}\right\}$ is a CONS of $L^{2}\left(S^{1} ; \mathbb{C}\right)$.
We define by A the area of a region D whose boundary ∂D is equipped with its parametrization z.

$$
\begin{equation*}
A(z):=\iint_{D} 1 \mathrm{~d} z_{1} \mathrm{~d} z_{2} \tag{1}
\end{equation*}
$$

where $z=z_{1}+i z_{2}$. We now formulate this in a manner of Fourier series. We apply the Complex Gauss-Green Theorem to (1).

$$
\begin{align*}
A(z) & =\frac{i}{2} \oint_{\partial D} z \mathrm{~d} \bar{z} \\
& =\frac{i}{2} \int_{0}^{2 \pi} z(s) \overline{z^{\prime}(s)} \mathrm{d} s \\
& =\frac{i}{2}\left\langle z, z^{\prime}\right\rangle_{L^{2}} \tag{2}
\end{align*}
$$

By the way, the area $A(z)$ is a real value. Is (2) "really real"? We can easily check it by rewriting (2) with Fourier series.

$$
\begin{aligned}
A(z) & =\frac{i}{2}\left\langle\hat{z}, \hat{z}^{\prime}\right\rangle_{\ell^{2}} \\
& =\frac{i}{2}\langle\hat{z}, i n \hat{z}\rangle_{\ell^{2}} \\
& =\frac{1}{2}\langle\hat{z}, n \hat{z}\rangle_{\ell^{2}} \in \mathbb{R}
\end{aligned}
$$

Furthermore, it claims that the area $A(z)$ does not depend on the Fourier coefficient \hat{z}_{0} which is just the "center" of the region. (Note that A is in fact a signed area, which is especially pointed out by the formula $A(z(s))=-A(z(-s))$.)

3 Shape perturbation

Since the area is written in the form of L^{2} norm, we obtain a perturbation formula in a form of L^{2} inner product.

$$
\begin{aligned}
A\left(z_{1}\right)-A\left(z_{2}\right) & =\frac{i}{2}\left[\left\langle z_{1}, z_{1}^{\prime}\right\rangle_{L^{2}}-\left\langle z_{2}, z_{2}^{\prime}\right\rangle_{L^{2}}\right] \\
& =\frac{i}{2}\left[\left\langle z_{1}-z_{2}+z_{2},\left(z_{1}-z_{2}+z_{2}\right)^{\prime}\right\rangle_{L^{2}}-\left\langle z_{2}, z_{2}^{\prime}\right\rangle_{L^{2}}\right] \\
& =\frac{i}{2}\left[\left\langle z_{1}-z_{2},\left(z_{1}-z_{2}\right)^{\prime}\right\rangle+2 i \operatorname{Im}\left\langle z_{1}-z_{2}, z_{2}^{\prime}\right\rangle\right] \\
& \approx-\operatorname{Im}\left\langle z_{1}-z_{2}, z_{2}^{\prime}\right\rangle \quad \text { as }\left\|z_{1}-z_{2}\right\|_{H^{1}} \rightarrow 0
\end{aligned}
$$

More rigorously speaking, this is a Gâteaux derivative, which is a generalized directional derivative, of the area function $A: H^{1} \rightarrow \mathbb{R}$.

$$
\begin{align*}
\mathrm{d} A(z ; \Delta z) & :=\left.\frac{\mathrm{d}}{\mathrm{~d} h}\right|_{h=0} A(z+h \Delta z) \\
& =-\operatorname{Im}\left\langle\Delta z, z^{\prime}\right\rangle_{L^{2}} \\
& =-\operatorname{Re}\left[-i\left\langle\Delta z, z^{\prime}\right\rangle_{L^{2}}\right] \\
& =\left\langle-i z^{\prime}, \Delta z\right\rangle_{L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)} \tag{3}
\end{align*}
$$

Note that we here identify the complex plane $\left(\mathbb{C}, \operatorname{Re}\langle\cdot, \cdot\rangle_{\mathbb{C}}\right)$ with 2-dimensional Euclidean space $\left(\mathbb{R}^{2},\langle\cdot, \cdot\rangle_{\mathbb{R}^{2}}\right)$. We thus have the following "gradient" of the area.

$$
\operatorname{Grad}_{L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)} A(z)=-i z^{\prime}=(\text { outward normal direction of } \partial D),
$$

which means a perturbation to the outward normal direction causes a shape to enlarge its area. Using Fourier series, we rewrite (3) as follows.

$$
\mathrm{d} A(z ; \Delta z)=\langle n \hat{z}, \Delta \hat{z}\rangle_{\ell^{2}\left(\mathbb{Z} ; \mathbb{R}^{2}\right)}
$$

4 Polar coordinates

We consider the case of Polar coordinates. Suppose z is of the following form.

$$
z(s)=Z(r)(s):=r(s) \exp (i s)
$$

where r is a positive-valued 2π-periodic smooth function. Then, we get

$$
\begin{aligned}
A(Z(r)) & =\frac{i}{2}\left\langle Z(r), Z(r)^{\prime}\right\rangle_{L^{2}} \\
& =\frac{i}{2}\left\langle r \exp (i s), r^{\prime} \exp (i s)+r i \exp (i s)\right\rangle_{L^{2}} \\
& =\frac{1}{2}\left[i\left\langle r, r^{\prime}\right\rangle_{L^{2}\left(S^{1} ; \mathbb{R}\right)}+\|r\|_{L^{2}\left(S^{1} ; \mathbb{R}\right)}^{2}\right] \\
& =\frac{1}{2}\left[\frac{i}{2} \int_{0}^{2 \pi}\left(r^{2}\right)^{\prime} \mathrm{d} s+\|r\|_{L^{2}\left(S^{1} ; \mathbb{R}\right)}^{2}\right] \\
& =\frac{1}{2}\|r\|_{L^{2}}^{2}, \\
\mathrm{~d}(A \circ Z)(r ; \Delta r) & =\mathrm{d} A(Z(r) ; \mathrm{d} Z(r ; \Delta r)) \\
& =\operatorname{Re}\left\langle-i Z(r)^{\prime}, \Delta r \exp (i s)\right\rangle_{L^{2}\left(S^{1} ; \mathbb{C}\right)} \\
& =\operatorname{Re}\left\langle-i r^{\prime}+r, \Delta r\right\rangle_{L^{2}\left(S^{1} ; \mathbb{C}\right)} \\
& =\langle r, \Delta r\rangle_{L^{2}\left(S^{1} ; \mathbb{R}\right)}, \\
\operatorname{Grad}_{L^{2}\left(S^{1} ; \mathbb{R}\right)}(A \circ Z) & =r .
\end{aligned}
$$

The last formula indicates that a perturbation to the perpendicular direction $\Delta r \in\{r\}^{\perp}$ preserves the area A, where $(\cdot)^{\perp}$ denotes the orthogonal complement in $L^{2}\left(S^{1} ; \mathbb{R}\right)$. For exmample, if r is a constant, this fact means that only 0 -mode perturbation cause the area to change since $\cos (n s)$ and $\sin (n s)$ are perpendicular to the constant in L^{2}.

5 Application: isoperimetric problem

Let L be the arclength of a Jordan curve ∂D.

$$
L(z):=\int_{0}^{2 \pi}|\mathrm{~d} z(s)|=\int_{0}^{2 \pi}\left|z^{\prime}(s)\right| \mathrm{d} s
$$

We then have the Gâteaux derivative of L explicitly as follows.

$$
\begin{align*}
\mathrm{d} L(z ; \Delta z) & =\langle G(z), \Delta z\rangle_{L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)} \tag{4}\\
G(z) & :=\operatorname{Grad}_{L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)} L(z)=-\left(\frac{z^{\prime}}{\left|z^{\prime}\right|}\right)^{\prime}
\end{align*}
$$

Eq.(4) represents that the curvature-weighted normal direction of a boundary is the gradient of L.

We consider the isoperimetric problem which is to find a shape of the largest area whose boundary keeps a certain length. Let $z_{0} \in H^{1}\left(S^{1} ; \mathbb{C}\right)$ be a frozen parametrization of a certain Jordan curve ∂D_{0}. Suppose ∂D_{0} is a solution to the isoperimetric problem. We assume mathematically that, "for any deformation of ∂D_{0} with keeping its length, an area A must attain a maximum at $\partial D_{0} . "$

For an arbitrary element $\Delta z \in H^{1}\left(S^{1} ; \mathbb{C}\right)$, we take an arbitrary continuous map (deformation) $Z:(-1,1) \rightarrow H^{1}$ such that

$$
\begin{aligned}
Z(0) & =z_{0} \\
\mathrm{~d} Z(\alpha ;+1) & =\Delta z \\
L(Z(\alpha)) & =\text { const }
\end{aligned}
$$

Owing to $L \circ Z=$ const, we have

$$
0=\mathrm{d}(L \circ Z)(\alpha ;+1)=\langle G(Z(\alpha)), \mathrm{d} Z(\alpha ;+1)\rangle_{L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)}
$$

We thus get

$$
\mathrm{d} Z(\alpha ;+1) \in\{G(Z(\alpha))\}^{\perp}
$$

where $(\cdot)^{\perp}$ denotes the orthogonal complement in $L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)$. Obviously, this is a necessary and sufficient condition for $L \circ Z=$ const. We especially have the following at $\alpha=0$.

$$
\Delta z \in\left\{G\left(z_{0}\right)\right\}^{\perp}
$$

Owing to the assumption, $A(Z(\alpha))$ attains its maximum at $\alpha=0$.

$$
\begin{aligned}
0 & =\mathrm{d}(A \circ Z)(0 ;+1) \\
& =\frac{1}{2}\left\langle-i z_{0}^{\prime}, \Delta z\right\rangle_{L^{2}\left(S^{1} ; \mathbb{R}^{2}\right)}
\end{aligned}
$$

from which it follows

$$
\Delta z \in\left\{-i z_{0}^{\prime}\right\}^{\perp}
$$

Therefore, $\left\{G\left(z_{0}\right)\right\}^{\perp} \subset\left\{-i z_{0}^{\prime}\right\}^{\perp}$ holds. (This should be shown by density argument rigorously.) Noting that codim $=1$, we conclude

$$
-C i z_{0}^{\prime}=G\left(z_{0}\right)=-\left(\frac{z_{0}^{\prime}}{\left|z_{0}^{\prime}\right|}\right)^{\prime} \quad \text { for some constant } C \in \mathbb{R}
$$

Without loss of generality, we may assume $\hat{z}_{0}=0$, that is, the center of the region D_{0} is at the origin. Taking integration and absolute value, we finally obtain $\left|C z_{0}\right|=1$. In other words, a solution ∂D_{0} to the isoperimetric problem must coincide with a circle.

