Decomposability of Radon Measures

Junichiro Matsuda (松田 隼一朗)

November, 2018

Abstract

In Pedersen [6], Radon-Nikodym theorem for Radon measures is proved under the assumption that the locally compact space is σ compact. But in fact, we can show the theorem and the duality of L^1 and L^{∞} with a bit modification without σ -compactness.

1 Decomposable Measures

Def 1.1 (decomposability). Let (X, \mathfrak{F}) be a measurable space. A measure μ on (X, \mathfrak{F}) is called **decomposable** if there is a family $\{X_j\}_{j \in J}$ of disjoint measurable sets satisfying the following:

- 1. $\bigsqcup_{j \in J} X_j = X.$
- 2. $\mu(X_j) < \infty$ for every $j \in J$.
- 3. $E \subset X$ is measurable if and only if $E \cap X_j$ is measurable for all $j \in J$.
- 4. $\mu(E) = \sum_{j \in J} \mu(E \cap X_j)$ for any measurable E of finite measure.

e.g.) In this paper we adopt that a **Radon measure** is a locally finite outer regular Borel measure which is inner regular for open sets. Strongly quasi-invariant measures on homogeneous spaces, containing Haar measures on locally compact groups, are decomposable because those spaces are the disjoint union of σ -compact clopen subsets $\{X_j\}_{j\in J}$ and they satisfy $\mu(E) = \sum_{j\in J} \mu(E \cap X_j)$ for any Borel subset E of finite measure by outer regularity.

Thm 1.2 (Radon-Nykodym). Let μ be a decomposable measure on (X, \mathfrak{F}) with decomposition $\{X_j\}_{j\in J}$, and ν an absolutely continuous measure with respect to μ . There exists a measurable function $m : X \to [0, \infty]$ such that $\int_E md\mu = \nu(E)$ for every E that is σ -finite for μ , and $m < \infty$ on each X_j that is σ -finite for ν .

Proof. For every $j \in J$, pick a measurable $Y_j \subset X_j$ that is σ -finite for ν and

$$\mu(Y_j) = \sup\{\mu(E) \mid E \subset X_j : \sigma \text{-finite for } \nu\}.$$

We can see the existence of Y_j by taking a countable union of σ -finite sets for ν in X_j that approximate the right hand side. In particular, we may take $Y_j = X_j$ for all X_j that is σ -finite for ν .

By Radon-Nikodym theorem for σ -finite measures, there exists a measurable $m_j : Y_j \to [0, \infty)$ such that $\int_E m_j d\mu = \nu(E)$ for every $E \subset Y_j$. Define a function m on X as $m = m_j$ on every Y_j and $m = \infty$ otherwise. Then mis measurable because for $F \subset [0, \infty]$, $m^{-1}(F)$ is measurable $\iff m_j^{-1}(F)$ and $X_j \setminus Y_j$ are measurable for all $j \in J$. By the choice of Y_j , we have $m < \infty$ on each X_j that is σ -finite for ν .

For a measurable set $E \subset X_j \setminus Y_j$, $\mu(E) = \nu(E) = 0$ or $\mu(E) > 0$ and E is not σ -finite for ν . Indeed, if E is σ -finite for ν , then $\mu(E) = \mu(Y_j \cup E) - \mu(Y_j) = 0$ because $Y_j \cup E$ is also σ -finite for ν ; if E is not σ -finite for ν , then $\mu(E)$ has to be positive by absolute continuity. Thus $\int_E m d\mu = \nu(E)$ for $E \subset X_j \setminus Y_j$.

For each σ -finite E for μ , $E \cap \bigsqcup_{j \notin J_0} X_j$ is null for some at most countable set $J_0 \subset J$ by $\mu(E) = \sum_{j \in J} \mu(E \cap X_j)$. Therefore we obtain by MCT that

$$\int_{E} m d\mu = \int_{E \cap \bigsqcup_{j \in J_0} X_j} m d\mu \stackrel{(MCT)}{=} \sum_{j \in J_0} \int_{E \cap X_j} m d\mu$$
$$= \sum_{j \in J_0} \left(\int_{E \cap Y_j} m_j d\mu + \int_{E \cap X_j \setminus Y_j} \infty d\mu \right)$$
$$= \sum_{j \in J_0} \left(\nu(E \cap Y_j) + \nu(E \cap X_j \setminus Y_j) \right) = \nu(E)$$

You can find this theorem in Folland [2, Exercise 3.15].

Thm 1.3 (duality of L^1 and L^{∞}). Let (X, \mathfrak{F}, μ) be a decomposable measure space. Then we have an isometric isomorphism

Proof. I is well-defined and $||I(\phi)|| \leq ||\phi||_{\infty}$ by Hölder's inequality.

(isometry) Pick a nonzero $\phi \in L^{\infty}(\mu)$. For each $0 < \eta < \|\phi\|_{\infty}$, $\{|\phi| > \eta\}$ is not null, so there is an $E \subset \{|\phi| > \eta\}$ of finite positive measure by decomposability. Then $f \coloneqq (\bar{\phi}/|\phi|)\chi_E$ satisfies $\|f\|_1 = \mu(E) < \infty$ and $\int f\phi d\mu = \int_E |\phi| d\mu \ge \eta \mu(E)$. Thus we get $\|I(\phi)\| \ge \int f\phi d\mu / \|f\|_1 \ge \eta$, and hence $\|I(\phi)\| \ge \|\phi\|_{\infty}$.

(surjection) Take a decomposition $\{X_j\}_{j\in J}$ for μ and a $\varphi \in L^1(\mu)^*$. φ defines a complex finite measure ν_j on each X_j by $\nu_j(E) = \varphi(\chi_E)$, which is absolutely continuous with respect to μ . Note that the finiteness follows from $|\varphi(\chi_E)| \leq ||\varphi|| \mu(E)$, and σ -additivity from continuity of φ .

By Jordan decomposition and Radon-Nikodym theorem for finite measures, there exists a measurable function $\phi_j : X_j \to \mathbb{C}$ such that

$$\int_E \phi_j d\mu = \nu_j(E) = \varphi(\chi_E)$$

for any measurable $E \subset X_j$, which implies that $\int_{X_j} f \phi_j d\mu = \varphi(f)$ for every $f \in L^1(X_j, \mu)$. Here we may assume $|\phi_j| \leq ||\varphi||$ on X_j because if $E := \{|\phi_j| > ||\varphi||\}$ is not null, we have

$$\|\varphi\| \mu(E) < \int_{E} |\phi_j| d\mu = \varphi\left(\frac{\overline{\phi_j}}{|\phi_j|}\chi_E\right) \le \|\varphi\| \mu(E),$$

a contradiction.

Define a function ϕ on X as $\phi = \phi_j$ on every X_j , which is measurable by decomposability of μ and bounded by $\|\varphi\|$ as shown above. For each $f \in L^1(\mu)$, since f is supported in a σ -finite set, $\{f \neq 0\} \cap \bigsqcup_{j \notin J_0} X_j$ is null for some at most countable set $J_0 \subset J$. Then it follows from $f \stackrel{(DCT)}{=} \sum_{j \in J_0} f\chi_{X_j}$ in $L^i(\mu)$ that

$$\varphi(f) = \sum_{j \in J_0} \varphi(f\chi_{X_j}) = \sum_{j \in J_0} \int_{X_j} f\phi_j d\mu$$
$$\stackrel{(DCT)}{=} \int_{\bigsqcup_{j \in J_0} X_j} f\phi d\mu = \int f\phi d\mu,$$

therefore $\varphi = I(\phi)$.

2 Local Measurability

Def 2.1. Let μ be a Radon measure on a locally compact space X with Borel σ -algebra \mathfrak{B} , and \mathfrak{B}^1 the subset of all Borel sets of finite measure.

 $E \subset X$ is said to be **locally Borel** if $E \cap K$ is Borel for any $K \in \mathfrak{B}^1$. Locally Borel sets forms a σ -algebra \mathfrak{F} . A function on X is called **locally Borel** if its inverse image of each Borel set is locally Borel.

A locally Borel function is called **locally integrable** if it is integrable with respect to μ on each compact subset. This makes sense because the restriction of a locally Borel function on a compact set is a Borel function.

A subset E of X is called **locally null** if $E \cap K$ is null for any $K \in \mathfrak{B}^1$. A statement on X is said to hold **locally almost everywhere (l.a.e.)** if it is true except on a locally null set.

Note that the local measurability depends on μ .

Although we defined local measurability only for Radon measures, it is in fact defined for an arbitrary measure space. If you want to know more about it, I recommend you to look up in Folland [2, Exercise 1.16, 1.22].

Recall. Let \mathfrak{C} be the family of all compact sets in X. Measurable sets with respect to a Radon integral $\int = \int d\mu$ on $C_c(X)$ are defined in Pedersen [6] as follows. Define inner and outer measure of $E \subset X$ by

$$\mu_*(E) \coloneqq \sup\{\mu(C) \mid \operatorname{cpt} C \subset E\} = \sup\left\{\int_* g \mid \chi_E \ge g \in C_c(X)_m\right\}$$
$$\mu^*(E) \coloneqq \inf\{\mu(U) \mid \operatorname{open} U \supset E\} = \inf\left\{\int^* h \mid \chi_E \le h \in C_c(X)^m\right\},$$

and we put

$$\mathfrak{M}^{1} = \{ E \subset X \mid \mu_{*}(E) = \mu^{*}(E) < \infty \}$$
$$\mathfrak{M} = \{ E \subset X \mid E \cap C \in \mathfrak{M}^{1} \; \forall C \in \mathfrak{C} \}.$$

As is proved in Pedersen [6], $\mathfrak{M}^1 = \{E \in \mathfrak{M} \mid \mu^*(E) < \infty\}$, and μ_* and μ^* are measures on (X, \mathfrak{M}) . It is trivial that $\mu^*|_{\mathfrak{B}} = \mu$ by outer regularity, and $\mathfrak{B}^1 = \mathfrak{B} \cap \mathfrak{M}^1$. According to locally Borel terminology, it might be good to call elements in \mathfrak{M} 'locally Lebesgue.'

Lem 2.2. The locally Borel sets $(\in \mathfrak{F})$ are contained in \mathfrak{M} , and hence μ_* and μ^* define measures on (X, \mathfrak{F}) .

Proof. Let $E \in \mathfrak{F}$, then $\mathfrak{C} \subset \mathfrak{B}^1$ implies $E \cap C \in \mathfrak{B}^1 \subset \mathfrak{M}^1$ for every $C \in \mathfrak{C}$, hence $E \in \mathfrak{M}$.

Lem 2.3. *i)* $E \subset X$ is null if and only if $\mu^*(E) = 0$.

ii) $E \in \mathfrak{M}$ is locally null if and only if $\mu_*(E) = 0$.

Proof.

i) If E is null, then there is a Borel set $N \supset E$ such that $\mu(N) = 0$. By outer regularity, $\mu^*(E) \leq \mu^*(N) = \mu(N) = 0$.

Conversely if $\mu^*(E) = 0$, then $\mu(N) = 0$ for some countable intersection N of open sets containing E, hence E is null.

ii) If $E \in \mathfrak{M}$ is locally null, then $C = E \cap C$ is null for any compact $C \subset E$, hence $\mu_*(E) = 0$.

Conversely if $\mu_*(E) = 0$, then we have $\mu^*(E \cap K) = \mu_*(E \cap K) = 0$ for any $K \in \mathfrak{B}^1$ by $E \cap K \in \mathfrak{M}^1$, hence $E \cap K$ is null.

Prop 2.4. We have for $1 \le p < \infty$ isometric isomorphisms

 $L^p(\mu) \cong L^p(\mu_*, \mathfrak{B}) \cong L^p(\mu^*, \mathfrak{F}) \cong L^p(\mu_*, \mathfrak{F}) \cong L^p(\mu^*, \mathfrak{M}) \cong L^p(\mu_*, \mathfrak{M}).$

Proof. By $\mathfrak{B} \subset \mathfrak{F} \subset \mathfrak{M}$ and $\mu_* \leq \mu^*$, we have a commutative diagram of norm decreasing operators

$$L^{p}(\mu) \longleftrightarrow L^{p}(\mu^{*}, \mathfrak{F}) \longleftrightarrow L^{p}(\mu^{*}, \mathfrak{M})$$

$$\downarrow \qquad \qquad \downarrow^{I}$$

$$L^{p}(\mu_{*}, \mathfrak{B}) \longleftrightarrow L^{p}(\mu_{*}, \mathfrak{F}) \longleftrightarrow L^{p}(\mu_{*}, \mathfrak{M})$$

where the horizontal arrows are isometric embeddings. It suffices to show surjective isometry for nonnegative functions. Moreover, we may assume p = 1 because $||f||_p^p = ||f^p||_1$ for nonnegative measurable f.

(isometry) Since $\int \chi_E d\mu^* = \mu^*(E) = \mu_*(E) = \int \chi_E d\mu_*$ for any $E \in \mathfrak{M}^1$, $\int f d\mu^* = \int f d\mu_*$ holds for every $f \in L^1(\mu^*, \mathfrak{M})_+$. Thus *I* is an isometry, which implies that all arrows in the diagram above are isometries.

(surjection) For any $E \in \mathfrak{M}$ with $\mu_*(E) < \infty$, there is a σ -compact $F \in \mathfrak{B}^1$ such that $\mu(F) = \mu_*(E)$ i.e. $\mu_*(E \setminus F) = 0$, which shows that for any simple function $f \in L^1(\mu_*, \mathfrak{M})_+$, there is a simple function $g \in L^1(\mu)_+$ such that f = g l.a.e. Therefore approximation by simple functions proves that for every $f \in L^1(\mu_*, \mathfrak{M})_+$ there exists $g \in L^1(\mu)_+$ such that f = g l.a.e., hence all the spaces are isometrically isomorphic to each other.

Def 2.5. By Prop(2.4), we redefine $L^p(\mu)$ as $L^p(\mu_*, \mathfrak{F})$ for $1 \leq p \leq \infty$. $L^{\infty}(\mu)$ is the space of l.a.e.-bounded locally Borel functions, which can be different from $L^{\infty}(\mu, \mathfrak{B})$.

e.g.) Let $X = \bigsqcup_{\alpha < \omega} \mathbb{R}_{\alpha}$ be a disjoint union of uncountably many copies $\{\mathbb{R}_{\alpha}\}_{\alpha < \omega}$ of \mathbb{R} , where ω is the smallest uncountable ordinal. X has a Radon measure μ given by Lebesgue measure on each component.

Pick a closed $E = \{0_{\alpha} \in \mathbb{R}_{\alpha} \mid \alpha < \omega\}$. Then $\mu^{*}(E) = \infty$ and $\mu_{*}(E) = 0$, which shows that $\chi_{E} \neq 0$ in $L^{\infty}(\mu, \mathfrak{B})$ but $\chi_{E} = 0$ in $L^{\infty}(\mu_{*}, \mathfrak{B})$.

3 Decomposition of Radon measures

Def 3.1. Let μ be a Radon measure on X. A family \mathscr{F} of disjoint nonempty compact subsets of X is called a **concassage** (a French word meaning 'crushing') of μ if it satisfies the following:

- 1. For any open set U and $F \in \mathscr{F}$, $\mu(U \cap F) > 0$ if $U \cap F$ is nonvoid.
- 2. $F_0 \coloneqq X \setminus \bigsqcup \mathscr{F}$ is locally null.

Let's call a family \mathscr{F} of disjoint nonempty compact subsets a **preconcassage** (my own terminology) of μ if it has the property 1.

Note that the empty family \emptyset is a preconcassage of μ .

The definition above is according to Hewitt and Ross [5] theorem(11.39), although they did not name the family \mathscr{F} . The word concassage is found in Gardner and Pfeffer [3, 4].

Lem 3.2. A preconcassage \mathscr{F} of μ on X satisfies the following:

- i) $E \cap F = \emptyset$ for all but countable $F \in \mathscr{F}$ for every $E \in \mathfrak{M}^1$.
- *ii)* $F_0 \coloneqq X \setminus | | \mathscr{F} \text{ is locally Borel.}$

Proof.

- i) Given $E \in \mathfrak{M}^1$, we have an open set $U \supset E$ of finite measure. By $\sum_{F \in \mathscr{F}} \mu(U \cap F) \leq \mu(U) < \infty$ and $\mu(U \cap F) > 0$ if $U \cap F \neq \emptyset$, U intersects at most countable $F \in \mathscr{F}$, so does $E \subset U$.
- ii) For any $K \in \mathfrak{B}^1$, there are by i) at most countable $F \in \mathscr{F}$ that intersects K. Thus $F_0 \cap K = K \setminus \bigsqcup_{F \in \mathscr{F}} (K \cap F)$ is a Borel set, which shows that F_0 is locally Borel.

Lem 3.3. Let C be a compact subset of X. There is a compact $F \subset C$ such that $C \setminus F$ is null and $\mu(V \cap F) > 0$ for any open V that intersects F.

Proof. Let \mathscr{U} be the family of all null and relatively open subsets of C, then $U \coloneqq \bigcup \mathscr{U}$ is the maximal element in \mathscr{U} (\because It is clear that U is relatively open and $U \in \mathfrak{B}^1$, and any compact subset of U, covered by finitely many elements in \mathscr{U} , is also null). Put $F \coloneqq C \setminus U$: compact. Suppose $\mu(V \cap F) = 0$ for an open set V in X, then $\mu(V \cap C) = \mu(V \cap F) + \mu(V \cap U) = 0$ implies $V \cap C \subset U$ i.e. $V \cap F = \emptyset$. Thus F is what we desired.

Prop 3.4. Every Radon measure μ on X admits a concassage.

Proof. We may assume $\mu \neq 0$ since \emptyset is a concassage of $\mu = 0$.

Let \mathcal{F} be the set of all preconcassages of μ , ordered by inclusion. \mathcal{F} is inductively ordered because every totally ordered subset \mathcal{F}_0 has an upper bound $\bigcup \mathcal{F}_0 \in \mathcal{F}$. Thus there is a maximal preconcassage $\mathscr{F} \in \mathcal{F}$ by Zorn's lemma.

Put $F_0 := X \setminus \bigsqcup \mathscr{F}$, which is locally Borel by Lem(3.2.ii). It suffices to show $\mu_*(F_0) = 0$ by Lem(2.3). Suppose $\mu_*(F_0) > 0$, then there is a compact

 $C \subset F_0$ of positive measure. By Lem(3.3) we have a compact $F_1 \subset C$ of positive measure such that $\mu(U \cap F_1) > 0$ for any open U of nonvoid intersection with F_1 . This shows that $\mathscr{F} \cup \{F_1\}$ is a preconcassage of μ , which contradicts the maximality of \mathscr{F} .

Thm 3.5. μ_* on (X, \mathfrak{F}) is decomposable, and so is μ_* on (X, \mathfrak{M}) .

Proof. Pick a concassage \mathscr{F} of μ and put $F_0 := X \setminus \bigsqcup \mathscr{F}$. We prove that $\mathscr{F} \cup \{F_0\}$ gives a decomposition of (X, \mathfrak{F}, μ_*) .

1. It is evident that $F_0 \sqcup \bigsqcup \mathscr{F} = X$.

2. $0 < \mu_*(F) = \mu(F) < \infty$ for all $F \in \mathscr{F} \subset \mathfrak{C}$, and $\mu_*(F_0) = 0$ by Lem(2.3).

3. Since $\mathscr{F} \cup \{F_0\} \subset \mathfrak{F}$, $E \cap F$ and $E \cap F_0$ are locally Borel for all $F \in \mathscr{F}$ and $E \in \mathfrak{F}$.

Conversely assume $E \subset X$ satisfies that $E \cap F_0$ and $E \cap F$ are locally Borel ($\forall F \in \mathscr{F}$). (Since $\mathscr{F} \subset \mathfrak{B}^1$, in fact $E \cap F \in \mathfrak{B}^1$ for each $F \in \mathscr{F}$.) Given $C \in \mathfrak{B}^1$ there are at most countable $F \in \mathscr{F}$ such that $F \cap C \neq \emptyset$, so it follows that

$$E \cap C = ((E \cap F_0) \cap C) \sqcup \bigsqcup_{F \in \mathscr{F}} ((E \cap F) \cap C) \in \mathfrak{B}^1,$$

hence $E \in \mathfrak{F}$.

4. Pick an $E \in \mathfrak{F}$ with $\mu_*(E) < \infty$. There is a σ -compact, hence Borel, subset $K \subset E$ such that $\mu(K) = \mu_*(E)$. Since $K \cap F$ is void for all but countably many $F \in \mathscr{F}$ and F_0 is locally null, we obtain

$$\mu_*(E) = \mu(K) = \mu(K \cap F_0) + \sum_{F \in \mathscr{F}} \mu(K \cap F)$$

$$\leq \mu_*(E \cap F_0) + \sum_{F \in \mathscr{F}} \mu_*(E \cap F) \leq \mu_*(E)$$

i.e. $\mu_*(E) = \mu_*(E \cap F_0) + \sum_{F \in \mathscr{F}} \mu_*(E \cap F).$

A similar proof — obtained by replacing $\mathfrak{B}^1, \mathfrak{F}$, and $C \in \mathfrak{B}^1$ by $\mathfrak{M}^1, \mathfrak{M}$, and $C \in \mathfrak{C}$ respectively — is valid for (X, \mathfrak{M}, μ_*) .

Prop 3.6. For any \mathfrak{M} -measurable function f on X, there exists a locally Borel function g such that f = g l.a.e.

Proof. Fix a \mathfrak{M} -measurable function f on X and a concassage \mathscr{F} of μ . For each $F \in \mathscr{F}$, $f|_F$ is pointwisely approximated by \mathfrak{M}^1 -measurable simple functions, which are equal to Borel simple functions a.e. So $f|_F$ is pointwisely approximated by Borel simple functions a.e., and hence there is a Borel function g_F on F such that $f|_F = g_F$ a.e. (i.e. $\{f|_F \neq g_F\}$ is null).

Define a function g on X by $g = g_F$ on $F \in \mathscr{F}$ and g = 0 on F_0 , which is locally Borel because so is componentwisely. Since F_0 is locally null and any compact subset of $\{f \neq g\}$ intersects at most countable $F \in \mathscr{F}$, we get f = g l.a.e.

Prop 3.7. We have an isometric isomorphism

$$L^{\infty}(\mu) = L^{\infty}(\mu_*, \mathfrak{F}) \cong L^{\infty}(\mu_*, \mathfrak{M}).$$

Proof. $\mathfrak{F} \subset \mathfrak{M}$ induces an isometric embedding $L^{\infty}(\mu) \hookrightarrow L^{\infty}(\mu_*, \mathfrak{M})$. Surjectivity follows from Prop(3.6), hence this is an isometric isomorphism.

Thm 3.8 (duality of L^1 and L^{∞} for Radon measures). For a Radon measure μ on X, we have $L^{\infty}(\mu) \cong L^1(\mu)^*$.

Proof. This is the direct application of the duality theorem(1.3) to (X, \mathfrak{F}, μ_*) which is found to be decomposable by Thm(3.5).

In order to treat several measures, we denote $\mathfrak{B}^1, \mathfrak{F}$, and \mathfrak{M} for μ by $\mathfrak{B}^1_{\mu}, \mathfrak{F}_{\mu}$, and \mathfrak{M}_{μ} respectively.

Thm 3.9 (Radon-Nikodym for Radon measures). Let μ and ν be Radon measures on X, and ν absolutely continuous with respect to μ .

- i) Every μ -locally null set is also ν -locally null.
- ii) $\mathfrak{F}_{\mu} \subset \mathfrak{M}_{\mu} \subset \mathfrak{M}_{\nu}$, and hence ν_* defines absolutely continuous measures with respect to μ_* for σ -algebras \mathfrak{F}_{μ} and \mathfrak{M}_{μ} .

- iii) There exists a μ -locally integrable function $m: X \to [0, \infty)$ such that $\int_E m d\mu_* = \nu_*(E)$ for any $E \in \mathfrak{M}_{\mu}$ that is σ -finite for μ_* . m is unique up to μ -l.a.e., which is called the Radon-Nikodym derivative and denoted by $\frac{d\nu}{d\mu}$.
- iv) $\int_E m d\mu^* = \nu^*(E)$ for all μ^* - σ -finite $E \in \mathfrak{M}_{\mu}$, containing \mathfrak{B}^1_{μ} .
- v) $\mathfrak{F}_{\nu} \subset \mathfrak{M}_{\mu}$, hence for any $f \in L^{1}(\nu)$, $fm \in L^{1}(\mu)$ is well-defined and $\int fmd\mu = \int fd\nu$.

Proof.

- i) Let $E \subset X$ be a μ -locally null set. For $K \in \mathfrak{B}^1_{\nu}$, we have a σ -compact $C \subset K$ with $\nu(K) = \nu(C)$. Then $\mu^*(E \cap C) = 0$ implies $\nu^*(E \cap K) \leq \nu^*(E \cap C) + \nu(K \setminus C) = 0$.
- ii) For $E \in \mathfrak{M}_{\mu}$ and $C \in \mathfrak{C}$, there are σ -compact set $K \subset E \cap C$ and G_{δ} set $U \supset E \cap C$ such that $\mu(U \setminus K) = 0$, whence $\nu(U \setminus K) = 0$ shows $E \in \mathfrak{M}_{\nu}$.
- iii.existence) Fix a concassage \mathscr{F} of μ . We now know that $F_0 \in \mathfrak{F}_{\mu} \subset \mathfrak{M}_{\nu}$ is locally null not only for μ but also for ν . By Radon-Nikodym theorem(1.2), there is a μ -locally Borel function $m: X \to [0, \infty]$ such that $\int_E m d\mu_* = \nu_*(E)$ for every $E \in \mathfrak{M}_{\mu}$ that is σ -finite for μ_* . Since every $F \in \mathscr{F}$ and F_0 are μ_* finite, $m < \infty$ on X. Local integrability of m comes from

$$\int_C md\mu = \int_C md\mu_* = \nu_*(C) = \nu(C) < \infty$$

for each $C \in \mathfrak{C}$ because μ_* and μ^* agree on \mathfrak{M}^1_{μ} .

iii.uniqueness) Suppose m is as in the proof of existence, and m' is such another \mathfrak{M}_{μ} -measurable function. Then $\{m \neq m'\} \in \mathfrak{M}_{\mu}$, and for any compact $C \subset \{m \neq m'\}$ we have

$$\int_{C} (m - m') d\mu = \nu(C) - \nu(C) = 0,$$

which means that $m = m' \mu$ -l.a.e.

iv) It suffices to show for $E \in \mathfrak{M}^1_{\mu}$. In the same way as ii), we have $\nu_*(E) = \nu^*(E)$, so that

$$\int_{E} m d\mu^{*} = \int_{E} m d\mu_{*} = \nu_{*}(E) = \nu^{*}(E).$$

v) Pick $E \in \mathfrak{F}_{\nu}$, then it follows for any $C \in \mathfrak{C}$ that $F \cap C$ is a Borel subset of C, contained in $\mathfrak{B}^{1}_{\mu} \subset \mathfrak{M}^{1}_{\mu}$. Thus $E \in \mathfrak{M}_{\mu}$.

So fm is \mathfrak{M}_{μ} -measurable and $\int fm d\mu^* = \int f d\nu^*$ holds for every ν -locally measurable simple function in $L^1(\nu)$ by iv). This shows that null functions are mapped to null functions, so $fm \in L^1(\mu)$ is well- defined, and the integral equality holds for any $f \in L^1(\nu)$ because simple functions are dense in $L^1(\nu)$. Moreover we have $\int fm d\mu = \int f d\nu$ since we can take representatives from Borel functions.

Prop 3.10 (chain rule). Assume that λ, μ and ν are Radon measures on X such that $\nu \ll \mu \ll \lambda$. Then

$$\frac{d\nu}{d\mu}\frac{d\mu}{d\lambda} = \frac{d\nu}{d\lambda}$$
 λ -l.a.e.

Proof. Now $\frac{d\nu}{d\mu}$ is measurable with respect to $\mathfrak{F}_{\mu} \subset \mathfrak{M}_{\lambda}$, and $\frac{d\mu}{d\lambda}$ is measurable with respect to $\mathfrak{F}_{\lambda} \subset \mathfrak{M}_{\lambda}$. Hence $\frac{d\nu}{d\mu}\frac{d\mu}{d\lambda}$ is \mathfrak{M}_{λ} -measurable.

For any compact $C \subset X$, it follows from μ -local integrability of $\frac{d\nu}{d\mu}$ and Radon-Nikodym theorem(3.9.v) that

$$\nu(C) = \int_C \frac{d\nu}{d\mu} d\mu = \int_C \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} d\lambda,$$

whence

$$\nu_*(E) = \int_E \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} d\lambda_*$$

for any $E \in \mathfrak{M}_{\lambda}$ with $\lambda_*(E) < \infty$. Therefore $\frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} = \frac{d\nu}{d\lambda} \lambda$ -l.a.e. by uniqueness of the Radon-Nikodym derivative.

References

- G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Inc., 1995.
- [2] G. B. Folland, Real Analysis : Modern Techniques and Their Applications (2nd ed.), John Wiley and Sons, Inc., 1999.

- [3] R. J. Gardner and W. F. Pfeffer, Some Undecidability Results Concerning Radon Measures, American Mathematical Society, 259 (1980), 65-74.
- [4] R. J. Gardner and W. F. Pfeffer, Decomposability of Radon Measures, American Mathematical Society, 283 (1984), 283-293.
- [5] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, vol. I, Springer-Verlag, 1963.
- [6] G. K. Pedersen, Analysis Now, Springer-Verlag, 1989.