井上亜星(イノウエアセイ)。整数論がやりたい。
詳しすぎるし古いので通読するには適さない。PIDのことを主イデアル整域と書いていたり、UFDのことをGauss整域と書いていたりして時代を感じる。しかし多くのことが載っていて頼りになる。
非常に説明が丁寧で、行間が存在しない。例が豊富とはいえないが、日本語のホモロジー代数の本はどれも行間がたくさんあるので、こういう本は貴重。お薦めの本。雪江明彦先生はHenri Cartan & Samuel Eilenberg「Homological Algebra」がオススメらしい。
#ref(): File not found: "Osborne「Basic Homological Algebra」のノート.pdf" at page "イノウエ"
第1巻と第2巻はすでに定番の感がある。行間もなく例も多い良書。誤植は結構あるが、親切なことに正誤表が著者のホームページにある。第3巻の後半はいろんな話題のつまみぐいになっているのが残念だが、お薦めの本。可換環論についてはあんまり詳しく書いていないことに注意。
整数論の広範な話題を懇切丁寧かつ詳細に語ってくれる希有な本。1巻はp進数など。2巻は代数的整数論。3巻は解析的整数論。第2巻で整数環の基底の決定について詳しく書いているのはこの本の特徴だと思う。整数論なのでFourier解析とか測度論とかガロア理論とかそのほかいろいろの予備知識を必要とするが、ほかの本を極力参照しなくても読めるように配慮がなされている。誤植は結構あるがやはり著者のページに正誤表が出ている。より進んだ話題について読書案内があるのもありがたい。おすすめ。
解析学Iの授業に先立って読んだが、授業のほうがよく整理されていた印象。測度論を勉強するには定番の本であり、実際良い本だと思うがもっと良い本はあるかもしれない。Lebesgue積分が存在することを最初に示しているが、退屈なので初読時にはそこは飛ばした方がいいと思う。測度論を勉強するほかの選択肢として、確率論系の本というのがある。後半の関数解析の話は黒田関数解析で読んだ方がいい。
初学者向けの本。話題を絞って丁寧に解説している。比較的すぐ読み通せるので初めにこちらを読み、そのあとアールフォルスを面白いところだけ読むのがいいと思う。アールフォルスは初めての人にはきつい箇所もあるから。
分厚くて読むのが大変そうな見た目だが、実は位相の説明に序盤のかなりの紙数を割いているため実質的な内容はそう多くない。説明が丁寧とは言えないが、本質を突いたことが 簡潔に書かれている良書。解析接続のところでなにやら難しいことが書かれていて面食らったが、普通は一致の定理が理解できていれば十分であると聞いて安心した記憶がある。
分厚いしさぞ丁寧に書いてあるんだろうなと思ったらそうでもなかった。表現としてisomorphicであることの定義がはっきり書かれていないなど問題アリ。ただ具体例がたくさん載ってるのは素晴らしいので、しばらく読んでみようと思っている。雪江明彦先生のおすすめ。リー群の表現論についてはAnthony W. Knappの「Lie Groups Beyond an Introduction」がとても判りやすくて良いという話を聞いた。あとBrian Hall「Lie Groups, Lie Algebras, and Representations」がよいらしい。 演習問題の解答を作成中…。
#ref(): File not found: "Fulton&Harris 演習1-1.pdf" at page "イノウエ"
#ref(): File not found: "Fulton&Harris 演習1-3.pdf" at page "イノウエ"
#ref(): File not found: "Fulton&Harris 演習1-11.pdf" at page "イノウエ"
#ref(): File not found: "Fulton&Harris 演習1-12.pdf" at page "イノウエ"
#ref(): File not found: "Fulton&Harris 演習2-21.pdf" at page "イノウエ"
Fulton Harrisと違ってとても薄い。G-linear mapにあたる用語が定義されていないっぽいのと、指標の直交性を示すのに表現行列を使うというかっこ良くない方法をとっているのが気になる。でもいい本だと思う。
説明が丁寧な上に広範な話題を解説してくれる良い本。上級者向けの本と紹介されることがあるが、行間はないので初学者でも読める。ただし超関数の一般論は扱っていない。
説明は丁寧で行間もないのだが、例が深刻に欠乏しているので退屈きわまりない。多様体は位相空間ほどほかの分野で出てこないので、これは致命的だと思う。ほかの本として、Loring W. Tuの「An Introduction to Manifolds」が良書という評判を聞いた。
ミツヨシと読む。ジュッキチではない。加藤毅先生のおすすめだが、僕には難しすぎた。途中で挫折。この本で理解できる人は幾何学の素養が既にある人だと思う。僕は代数トポロジーの勉強を始めたばかりのころ、良い本を探して人におすすめの本を訊いてまわったり、図書館を物色したり、できる限りのことをしたが、結局直感的イメージの詳細な説明がある本はHatcherしか見つけられなかった。Hatcherの項でさんざん悪口をいいつつも「読む価値がある」とツンデレ気味なのはそういう事情による。
丁寧に書いてあるのだが、例が少ないので別の本で補う必要がある。位相空間は複素函数論や関数解析や代数的整数論といった分野で次々と登場するため、これを読んでからそういった分野の本を読むといいと思う。
浅岡正幸先生のおすすめと聞いた。すごく分厚い。絵や例がたくさん載っている。直感的な説明をし尽くしてから理論を語るという書き方で、くどいくらいたくさん説明してくれる。基本群を語る前に、まず投げ縄の話を…という調子。正誤表が著者のホームページで手に入る。本全体も同じ著者のページからダウンロードできる。演習問題がしこたま載っているが、答えやヒントは全くないという欠点がある。答えが欲しい人はこのページに誰かが作った答があるのでダウンロードしておこう。ただこの本、冗長なほどイメージを語るくせして証明が非常にザツ。もうどこもかしこも行間だらけ。おまけに用語の定義までフィーリングで書いてあるので、語によってはほかの文献ではどういう定義になっているか調べる必要がある。要はひどい本である。でも代数的トポロジーの本で例や直感的イメージの説明がこれほど多い本は稀なので、読む価値があると思う。 行間以外ではVan Kampen の定理がpush outとして解釈できることが書かれていないという問題点がある。push outとしての解釈は、たとえばJ.P.May「A Concise Course in Algebraic Topology」やWilliam Fulton「Algebraic Topology」、ならびにGlen. E. Bredon「Topology and Geometry」などに載っているので参照すべき。 代数トポロジーの本では、ほかにRaoul Bott&Loring W. Tuの「Differential Forms in Algebraic Topology」が有名である。たいへんな名著らしい。
#ref(): File not found: "Hatcher「Algebraic Topology」のノート.pdf" at page "イノウエ"
僕にとって興味がわかない分野だが、随伴関手定理まではおもしろかった。圏論の例はホモロジー代数や代数的トポロジーで多く出現するので、例が欲しい人はそういった分野の本を読むのがいいと思う。
Tom Leinster「Basic Category Theory」の日本語訳。訳者が演習問題に解答をつけてくださっているので、この本は原書より日本語訳がオススメ。現在、圏論の入門書の決定版だとおもう。
二冊ともわかりやすくておもしろい。ただ微積の方は重積分の変数変換公式を厳密に証明していないし、ベクトル解析の説明が雑すぎるという欠陥を持つ。
数論セミナーで使用していた本。マゾ向き。
論理学をつくることを介して論理学を学ぶ、というおもしろい趣向の本。「ならば」の真理値はなぜああなっているのか?とか、述語論理はなんのために考えられたか?といった素朴な疑問に丁寧に答えてくれる。数学の本とは思えないほど文体にユーモアがあって楽しい。「えばんげりおんのあやなみれいをちゅくってえ」には笑った。
確率論基礎の教科書だった。数学科の人間向けではないだろうが、名著という評判に違わずわかりやすく面白い本。随所にはさまれたギャグも楽しい。この本にある「無作為」という言葉の使い方への注意はあざやかで、一読の価値があるように思う。
数学専門の知恵袋とでも言うべきサイト。洋書を読んでいて困ったときはまずここを覗いてみることを勧める。同じことで悩んでいる人が見つかればしめたもの。
Texの例文集。たいへん便利。複雑な図式の書き方はこのサイトにはない。Xy-picを使うといい。
僕にはおもしろい全学共通科目を選ぶ力が致命的に欠落していて、空虚な授業をエンエン受け続ける羽目になった。未来ある一回生は、ネットを見たり、あるいは人に訊いたりして、面白い全学共通科目を探すといいと思う。
哲学が好きな人ならハマるかも。この先生はプロの哲学者で、分析哲学に詳しい。授業中いつでも質問ができるし、どんな質問をしてもちゃんと答えてくれる。青山先生独自の話が聞けることも多く、ハッとさせられることもしばしば。
楽単で有名だが、つまらない。僕はこの授業をとったはいいが、風邪を引いてテストに出ることができず、単位を落とした。
E3科目の先生はみな多かれ少なかれ「あなたたち日本人は英語を話す能力が劣っているのよ!」という煽りを口にするが、この先生は少なめなので胃にやさしい。単位をとるのは簡単ではないが、課題を提出するのが早いほどイイ点がもらえるので、課題を高速でやれば、出来が多少悪くても大丈夫。授業中発言すると点がもらえるが、日本語で発言してももらえるので点が稼ぎやすい。もちろん英語の勉強にもなる。
説明がわかりにくい。というか説明が無い。という以前に授業をしてない。ずーっと雑談。教科書を使わないくせに教科書を指定。そしてその教科書の監修者は、じぶーん。シラバスはお飾り。質問しても答えない。そして当然おもしろくない。この授業を切らなかったのは何故なのか、自分でもわからない。
なんとテストが無かった。理不尽に厳しいクラスが多い語学において、テスト無し!毎回出席してただ座っているだけで、語学単位がもらえたのだ。さすがにいつもテストがないわけではないだろうが、他の先生の授業よりやさしい可能性が高いと思われる。
毎回授業の最後に宿題が発表され、次の授業のはじめに学生が前に出て答えを発表する。授業中もしょっちゅう問題が口頭で出され、学生は答を思いついたら自由に発言できる。というぐあいに、学生に発言させることを好むひとである。学生と教員が活発に議論しあうという形式が好きな人におすすめ。宮崎先生のホームぺージに授業内容が公開されている。
いつも学生をどうやって面白がらせるか考えているのではないかと思う。授業に工夫があって素晴らしい。このひとも宮崎先生同様、学生に発言させるのが好きな人である。
数学教室の事務で頼むと見せてもらえる。写真をとるのはダメだが書き写すのはよいという規則である。なんのためにある規則なのかわからないが、これはその規則に従って写したものに、ついでに解答例を付けたもの。
#ref(): File not found: "数学系登録試験2017.pdf" at page "イノウエ"
#ref(): File not found: "数学系登録試験2016.pdf" at page "イノウエ"
(おわび)2017年の問1(1)の解答例が間違っていたので修正した。(2018/3/04/10:26)