顔合わせ及び今後の打ち合わせ。集合について軽いおさらい。 ゼミは p32 二項関係 からに決定。
p32 から p41 まで。二項関係、順序関係、整列集合について。超限順序数の話も。
p41 から p48 まで。選択公理、Zornの補題、整列可能定理の同値性について。Zornの補題の用例として極大idealの存在を証明。
p50 から p59 まで。Euclid空間と一般の距離空間について。離散的な集合で境界が定義できない気がして困ったが単に空集合だった。
p59 から p63 まで。距離空間の諸々について。位相からの定義との差異に注意。
内田伏一「集合と位相」