ネーター空間の有限直積はネーター空間である

@paper3510mm

平成30年1月10日

ネットによるネーター空間の特徴づけを紹介し、ネーター位相空間の有限個の直積、特に二つのネーター空間の直積はまたネーター位相空間であることを示す.

1 ネット

定義 **1.1.** 集合 I 上の二項関係 \leq が,反射的 $(i \leq i)$ かつ推移的 $(i \leq j, j \leq k \Rightarrow i \leq k)$ のとき,quasi-ordeer(あるいは preorder) という.

空でない集合 *I* 上の quasi-order ≤ が有向性:

 $\forall a, b \in I, \quad \exists c \in I, \quad a \le c, b \le c$

をもつとき, (I, \leq) は有向集合 (directed set) であるという.

定義 **1.2** (net). X を集合とする. 有向集合 (I, \leq) に対して、写像 $I \to X$ を X 上のネット (net) という. $i \in I$ の像を $x_i \in X$ と表し、 $(x_i)_{i \in I}$ が X 上のネットであると表現することにする.

部分集合 $A \subset X$ に対して、ネット $(x_i)_{i \in I}$ が eventually in A であるとは

 $\exists i \in I, \quad \forall i' \geq i, \quad x_{i'} \in A$

のときをいう.

定義 **1.3** (subnet). $(x_i)_{i \in I}$ を net とする. 有向集合 J と写像 $\alpha: J \to I$ が

monotone : $j \le j' \Rightarrow \alpha(j) \le \alpha(j')$

cofinal : $\forall i \in I$, $\exists j \in J$, $i \leq \alpha(j)$

をみたすとき, $(x_{\alpha(j)})_{j\in I}$ は $(x_i)_{i\in I}$ の部分ネット (subnet) という.

定義 **1.4** (ultranet). 集合 X 上の net $(x_i)_{i \in I}$ が ultranet であるとは,任意の部分集合 $A \subset X$ について $(x_i)_{i \in I}$ が eventually in A であるか,または eventually in A^c であるときをいう.

定義 1.5 (filter,ultrafilter). X を集合, $\mathcal{P}(X)$ をそのべキ集合とする. 空でない $\mathcal{F} \subset \mathcal{P}(X)$ が

$$A \subset B, A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$$

 $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$

をみたすときフィルター (filter) であるという. さらに真のフィルター \mathcal{F} が

$$\forall A \subset X$$
, $A \in \mathcal{F} \ \sharp \ \hbar \ \downarrow A^c \in \mathcal{F}$

をみたすとき ultrafilter であるという.

 $\mathcal{B} \subset \mathcal{P}(X)$ に対して

$$\uparrow \mathcal{B} := \{ A \subset X \mid \exists B \in \mathcal{B}, \quad B \subset A \}$$

と定める.

定義 **1.6** (filter basis). 空でない $\mathcal{B} \subset \mathcal{P}(X)$ が

$$\forall B_1, B_2 \in \mathcal{B}, \quad \exists A \in \mathcal{B}, \quad A \subset B_1 \cap B_2$$

をみたすとき、filter basis という.このとき $\mathcal{F}=\uparrow \mathcal{B}$ は filter をなし、 \mathcal{B} によって生成されるフィルター (filter generated by \mathcal{B}) であるという.特に $\emptyset \notin \mathcal{F}$ である必要十分条件は $\emptyset \notin \mathcal{B}$ である.

定理 1.7 (Kelly's theorem). 任意の net は ultranet である subnet をもつ.

証明. $(x_i)_{i \in I}$ を X 上の任意の net とする. $i \in I$ に対し $s_i = \{x_{i'} \in X \mid i \leq i'\}$ とし $(i \in I)$ の section という),

$$\mathcal{B} = \left\{ \bigcap_{\alpha=1}^{n} s_{i_{\alpha}} \mid n \in \mathbb{N}, i_{\alpha} \in I \right\}$$

とおくとこれは空でない. $\bigcap_{\alpha=1}^{n} s_{i_{\alpha}}$, $\bigcap_{\beta=1}^{m} s_{i_{\beta}} \in \mathcal{B}$ に対して $\left(\bigcap_{\alpha=1}^{n} s_{i_{\alpha}}\right) \cap \left(\bigcap_{\beta=1}^{m} s_{i_{\beta}}\right) \in \mathcal{B}$ であるから, \mathcal{B} は filter basis. よって

$$\mathcal{F}_0 = \uparrow \mathcal{B}$$

は X 上の filter である.ここで任意の $\bigcap_{\alpha=1}^{n} s_{i_{\alpha}} \in \mathcal{B}$ 対して,I は有向性をもつことか $\frac{n}{2}$ $\frac{n}{2}$

ら $i_1, \ldots, i_n \leq i$ なる $i \in I$ が存在し、このとき $x_i \in \bigcap_{\alpha=1}^n s_{i_\alpha}$ となり $\bigcap_{\alpha=1}^n s_{i_\alpha} \neq \emptyset$ である. よって $\emptyset \notin \mathcal{B}$ 、故に $\emptyset \notin \mathcal{F}_0$ である.

$$\Sigma = \{ \mathcal{F} \subset \mathcal{P}(X) : \text{filter} \mid \emptyset \notin \mathcal{F} \text{ in } \forall i \in I, s_i \in \mathcal{F} \}$$

とおくとき, \mathcal{F}_0 ∈ Σ より Σ ≠ \emptyset である.

 $\Sigma' \subset \Sigma$ を全順序部分集合とする. $\mathcal{F}_1 = \bigcup_{\mathcal{F} \in \Sigma'} \mathcal{F}$ とおく. まず \mathcal{F}_1 が filter であることを示す. $A \subset B$, $A \in \mathcal{F}_1$ とすると, $A \in \mathcal{F}$ なる $\mathcal{F} \in \Sigma'$ が存在する. \mathcal{F} は filter より $B \in \mathcal{F} \subset \mathcal{F}_1$ となる. A, $B \in \mathcal{F}_1$ とすると, $A \in \mathcal{F}_2$ なる $\mathcal{F}_2 \in \Sigma'$ と $B \in \mathcal{F}_3$ なる $\mathcal{F}_3 \in \Sigma'$ が存在する. Σ' は全順序だから,例えば $\mathcal{F}_2 \subset \mathcal{F}_3$ とすれば,A, $B \in \mathcal{F}_3$ であり, \mathcal{F}_3 は filter より $A \cap B \in \mathcal{F}_3 \subset \mathcal{F}_1$ となる.よって \mathcal{F}_1 は filter である.

明らかに $\emptyset \notin \mathcal{F}_1$, $\forall i \in I, s_i \in \mathcal{F}_1$ だから, $\mathcal{F}_1 \in \Sigma$. よって \mathcal{F}_1 は Σ' の上界である.したがって \mathbf{Zorn} の補題より, Σ は極大元 \mathcal{F}' をもつ.

この \mathcal{F}' が ultrafilter であることを示そう。 \mathcal{F}' は ultrafilter でないと仮定する。するとある $A \subset X$ が存在して $A \notin \mathcal{F}'$ かつ $A^c \notin \mathcal{F}'$ となる。このとき $C = \mathcal{F}' \cup \{A\} \cup \{V \cap A \mid V \in \mathcal{F}'\}$ で生成される filter は \mathcal{F}' を真に包み,すべての $s_i(i \in I)$ を含む。したがって \mathcal{F}' の極大性からこの filter は \emptyset を含む。よって

$$\exists V \in \mathcal{F}', \quad V \cap A = \emptyset.$$

同様に考えて,

$$\exists U \in \mathcal{F}', \quad U \cap A^c = \emptyset.$$

このとき,

$$(V \cap U) \cap A = \emptyset, \quad (V \cap U) \cap A^c = \emptyset.$$

$$\therefore V \cap U = \emptyset.$$

となるが、 \mathcal{F}' は filter より $\emptyset = V \cap U \in \mathcal{F}'$ となり、 $\emptyset \notin \mathcal{F}'$ に矛盾. したがって \mathcal{F}' は ultrafilter である.

さて

$$J = \{(i, E) \in I \times \mathcal{F}' \mid x_i \in E\}$$

とおき,

$$(i, E) < (i', E') \Leftrightarrow i < i' \Rightarrow E \supset E'$$

によって quasi-order を入れる. このとき J が有向集合であることを示す. (i, E), (i', E') \in J とすると,I は有向集合だから $i, i' \leq i_1$ なる $i_1 \in I$ がとれる. $E'' = E \cap E'$ とおくと $E'' \in \mathcal{F}'$. さらに \mathcal{F}' の定義から $s_{i_1} \in \mathcal{F}'$ なので, $E'' \cap s_{i_1} \in \mathcal{F}'$. \mathcal{F}' は空集合を

含まないから $E'' \cap s_{i_1} \neq \emptyset$ であり、よって $x_{i''} \in E'' \cap s_{i_1}(i_1 \leq i'')$ がとれて、このとき $(i'', E'') \in J$ となる.また

$$i \le i_1 \le i'', E \supset E \cap E' = E''$$
 かつ $i' \le i_1 \le i'', E' \supset E \cap E' = E''$

$$\therefore (i, E) \le (i'', E'')$$
 かつ $(i', E') \le (i'', E'')$

だから、Jは有向集合である.

写像 $\alpha: J \to I$ を $\alpha(i, E) = i$ で定めると、 α :monotone. $i \in I$ に対し、 $x_i \in s_i \in \mathcal{F}'$ より $(i, s_i) \in J$ で、 $\alpha(i, s_i) = i$ より α は全射、特に α :cofinal. よって、 $(x_{\alpha(i, E)})_{(i, E) \in J}$ は $(x_i)_{i \in I}$ の subnet となる.

最後に $(x_{\alpha(i,E)})_{(i,E)\in J}$ が ultranet であることを示そう。部分集合 $A\subset X$ を任意にとる。 $A\in \mathcal{F}'$ だとする。 $i_0\in I$ を一つとる。このとき $s_{i_0}\in \mathcal{F}'$ だから $A\cap s_{i_0}\in \mathcal{F}'$ となり $A\cap s_{i_0}\neq \emptyset$. よって $x_i\in A\cap s_{i_0}$ なる $i\geq i_0$ がとれ, $(i,A)\in J$ となる。 $(i,A)\leq (i',E')$ なる任意の $(i',E')\in J$ に対し, $x_{\alpha(i',E')}=x_{i'}\in E'\subset A$ である。したがって $(x_{\alpha(i,E)})_{(i,E)\in J}$ は eventually in A となる。一方で, $A\notin \mathcal{F}'$ だとすると, \mathcal{F}' は ultrafilter より $A^c\in \mathcal{F}'$ であるから,上と同じ議論により, $(x_{\alpha(i,E)})_{(i,E)\in J}$ は eventually in A^c となる。

以上より $(x_{\alpha(i,E)})_{(i,E)\in J}$ は ultranet である $(x_i)_{i\in I}$ の subnet である.

前半部分は任意の filter に対してそれを含む ultrafilter が存在することの証明そのままである.

2 ネットの収束と収積点

定義 **2.1** (convergence). X を位相空間とする. $x \in X$ の開近傍全体の集合を N(x) とする. X 上のネット $(x_i)_{i \in I}$ が x に収束する (converge to x) とは,

$$\forall U \in \mathcal{N}(x), \quad \exists i \in I, \quad \forall i' \geq i, \quad x_{i'} \in U$$

であるときをいう. このとき x は $(x_i)_{i \in I}$ の limit であるともいう.

定義 2.2 (cluster point). X を位相空間, $(x_i)_{i \in I}$ を X 上のネットとする. $x \in X$ が $(x_i)_{i \in I}$ の収積点 (cluster point) であるとは, $(x_i)_{i \in I}$ が x に収束する部分ネットをもつときをいう.

x が $(x_i)_{i \in I}$ の limit ならば cluster point である. 次の命題は cluster point の特徴づけを与える.

命題 **2.3.** X を位相空間, $x \in X$ をその点, $(x_i)_{i \in I}$ を X 上のネットとする.このとき,x が $(x_i)_{i \in I}$ の cluster point である必要十分条件は

$$\forall U \in \mathcal{N}(x), \quad \forall i \in I, \quad \exists i' \in I, \quad i \leq i', x_{i'} \in U$$

である.

証明. 必要性: $(x_{\alpha(j)})_{j\in I}$ を x に収束する $(x_i)_{i\in I}$ の subnet とする. 任意の x の開近 傍 U と任意の $i\in I$ に対して, $(x_{\alpha(j)})_{i\in I}$ を x に収束するから,

$$\exists j_0 \in J, \quad \forall j' \geq j_0, \quad x_{\alpha(j')} \in U.$$

α:cofinal より

$$\exists j_1 \in J, \quad i \leq \alpha(j_1).$$

J は有向だから, $j_0 \leq j, j_1 \leq j$ なる $j \in J$ が存在して,このとき $i \leq \alpha(j), x_{\alpha(j)} \in U$ となる.

十分性: $J = \{(i, U) \in I \times \mathcal{N}(x) \mid x_i \in U\}$ とおき

$$(i_1, U_1) \leq (i_2, U_2) \Leftrightarrow i_1 \leq i_2 \text{ in } U_1 \supset U_2$$

によって quasi-order をいれる. このとき J は有向集合である. なぜなら, (i_1,U_1) , (i_2,U_2) $\in J$ に対し, I は有向より $i_1,i_2 \leq i'$ なる $i' \in I$ がとれる. $U_3 = U_1 \cap U_2$ とおくと, $x \in U_3$ だから仮定より

$$\exists i_3 \in I, \quad i' \leq i_3, x_{i_3} \in U_3$$

となる. よって $(i_3, U_3) \in J$ で,

$$(i_1, U_1) \le (i_3, U_3), \quad (i_2, U_2) \le (i_3, U_3)$$

であるから、Jは有向集合である.

写像 $\alpha: J \to I$ を $\alpha(i,U) = i$ で定めると, α :monotone で,さらに仮定より α :cofinal.よって $(x_{\alpha(i,U)})_{(i,U)\in I}$ は $(x_i)_{i\in I}$ の subnet である.

任意のxの開近傍U'をとる。すると仮定から $x_{i'} \in U'$ なる $i' \in I$ が存在し,このとき $(i',U') \in J$. $(i,U) \geq (i',U')$ ならば, $x_i \in U$ で $i' \leq i$ かつ $U' \supset U$ より, $x_{\alpha(i,U)} = x_i \in U \subset U'$ となる。よって $(x_{\alpha(i,U)})_{(i,U) \in J}$ はx に収束する.

この条件を cluster point の定義とすることも多い.

limit は cluster point であるが, ultranet においては逆も成り立つ:

補題 **2.4.** 位相空間 X 上の ultranet $(x_i)_{i \in I}$ において, $x \in X$ がその limit であることとその cluster point であることは同値.

証明. 必要性は明らか. 十分性を示す. U を x の開近傍とする. $(x_i)_{i \in I}$ は ultranet より

 $(x_i)_{i \in I}$: eventually in U $\sharp \mathcal{L} \mathcal{U}$ $(x_i)_{i \in I}$: eventually in U^c .

後者であるとすると,

$$\exists i_1 \in I, \quad \forall i \geq i_1, \quad x_i \in U^c$$

であるが, x は cluster point より

$$\exists i_2 \in I, \quad i_1 \leq i_2, x_{i_2} \in U$$

だからこれは矛盾. よって $(x_i)_{i \in I}$: eventually in U. U は任意より x は limit である.

次にコンパクト性の net の cluster point による特徴づけを与える.

命題 2.5. 位相空間 X において, $K \subset X$ がコンパクトであることと,K の任意 の net $(x_i)_{i \in I}$ が K 内に cluster point をもつことは同値.

証明. 必要性: $K \subset X$ はコンパクトであるとする. K 内に cluster point をもたない $K \perp \mathcal{O}$ net $(x_i)_{i \in I}$ が存在すると仮定する. 各 $x \in K$ は $(x_i)_{i \in I}$ の cluster point ではないから,

$$\exists U_x \in \mathcal{N}(x), \quad \exists i_x \in I, \quad \forall j \geq i_x, \quad x_i \notin U_x$$

となる. $\{U_x\}_{x\in K}$ は K の開被覆をなし、K:コンパクトより

$$\exists x_1, \ldots, x_n \in K, \quad K \subset U_{x_1} \cup \cdots \cup U_{x_n}$$

となる. Iの有向性より $i_{x_1}, \ldots, i_{x_n} \leq i$ なる $i \in I$ がとれて、このとき

$$x_i \notin U_{x_1}, \ldots, x_i \notin U_{x_n}$$

となり、これは $x_i \in K$ に矛盾する.よって K の任意の net は K 内に cluster point をもつ.

十分性:K の任意の net $(x_i)_{i\in I}$ が K 内に cluster point をもつとする. K がコンパクトでないと仮定する。 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を K の開被覆とし, $\mathcal{U}=\{U_{\lambda_1}\cup\cdots\cup U_{\lambda_n}\mid\lambda_1,\ldots,\lambda_n\in\Lambda,n\in\mathbb{N}\}$ に包含順序をいれて有向集合とする。K はコンパクトでないから,各 $A\in\mathcal{U}$ について $K\nsubseteq A$ となり, $x_A\notin A$ なる $x_A\in K$ がとれる。このとき $(x_A)_{A\in\mathcal{U}}$ は K の net であり,ある $x\in K$ を cluster point をもつ。 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ は K の開被覆だったから, $x\in U_{\lambda}$ なる $\lambda\in\Lambda$ をとると, $U_{\lambda}\in\mathcal{U}$ であることと x が $(x_A)_{A\in\mathcal{U}}$ の cluster point であることから,

$$\exists A \in \mathcal{U}, \quad U_{\lambda} \subset A, x_A \in U_{\lambda}$$

これは $x_A \notin A$ に矛盾. したがって K はコンパクト.

3 ネーター空間

定義 **3.1** (noetherian space). 位相空間 X について,その任意の部分集合がコンパクトであるとき,ネーター空間 (noetherian space) であるという.

命題 3.2. 位相空間 X に対して,X がネーター空間であることと,任意の net $(x_i)_{i\in I}$ がある $x_{i_0}(i_0 \in I)$ を cluster point にもつことは同値.

証明. 必要性: $K = \{x_i \mid i \in I\}$ とおくと,X はネーター空間より K はコンパクトだから, $(x_i)_{i \in I}$ を K 上の net と思えばこれは K 内に cluster point をもつ.つまり, $(x_i)_{i \in I}$ はある $x_{i_0}(i_0 \in I)$ を cluster point にもつ.

十分性: $K \subset X$ を任意の部分集合とする. K 上の net $(x_i)_{i \in I}$ を任意にとると, X 上の net と思えば, ある $x_{i_0}(i_0 \in I)$ を cluster point にもつ. $x_{i_0} \in K$ であることから, K はコンパクト.

定義 **3.3** (self-convergence). 位相空間 $X \perp \mathcal{O}$ net $(x_i)_{i \in I}$ が self-convergent であるとは, $(x_i)_{i \in I}$ が各 x_i に収束するときをいう.

定理 **3.4.** 位相空間 X に対して,X がネーター空間であることと,任意の net が self-convergent な subnet をもつことは同値.

証明. 必要性:X上の $\operatorname{net}(x_i)_{i\in I}$ に対して,まず $J = \{i \in I \mid x_i \operatorname{ld}(x_i)_{i\in I}$ の cluster point} とおく. 先の命題から $J \neq \emptyset$. J は有向集合であり, $J \hookrightarrow I$ は cofinal であることを示そう. $i_1, i_2 \in J \subset I$ に対し, $I' = \{i \in I \mid i_1, i_2 \leq i\}$ とおくとこれは有向集合で $(x_{i'})_{i' \in I'}$ は X 上の net . 再び先の命題からこれはある $x_{i_0}(i_0 \in I')$ を cluster point にもつ. x_{i_0} は $(x_i)_{i\in I}$ の cluster point でもあるから $i_0 \in J$. よって J は有向集合.同じ議論によって $J \hookrightarrow I$ は cofinal となる.このことから, $(x_j)_{j\in J}$ は $(x_i)_{i\in I}$ の subnet であるということがわかる.

 $(x_i)_{i \in I}$ が ultranet である場合,前節の補題より, $(x_i)_{i \in I}$ は $x_j (j \in J)$ に収束する. J:cofinal より $(x_j)_{j \in J}$ も x_j に収束し,self-convergent である.よって $(x_i)_{i \in I}$ は self-convergent な subnet をもつ.

一般の net $(x_i)_{i \in I}$ の場合,Kelly の定理より ultranet である subnet が存在.よってこの subnet はさらに self-convergent な subnet をもつから, $(x_i)_{i \in I}$ も self-convergent な subnet をもつ.

十分性:任意の net $(x_i)_{i \in I}$ に対し,これは self-convergent な subnet をもつから,特にある x_{i_0} を cluster point にもつ.よって先の命題より,X はネーター空間である.

| 定理 **3.5.** X, Y がネーター空間なら, $X \times Y$ もネーター空間である.

証明. $(x_i, y_i)_{i \in I}$ を $X \times Y$ 上の net とする. X 上の net $(x_i)_{i \in I}$ に対し,X:noetherian より self-convergent subnet $(x_{\alpha(j)})_{j \in J}$ がとれる.さらに Y 上の net $(y_{\alpha(j)})_{j \in J}$ に対し,Y:noetherian より self-convergent subnet $(y_{\alpha(\beta(k))})_{k \in K}$ がとれる.このとき $(x_{\alpha \circ \beta(k)}, y_{\alpha \circ \beta(k)})_{k \in K}$ は self-conbergent であることを示そう. $(x_{\alpha \circ \beta(k')}, y_{\alpha \circ \beta(k')})(k' \in K)$ を任意に固定する. $(x_{\alpha \circ \beta(k')}, y_{\alpha \circ \beta(k')}) \in X \times Y$ の開近傍 W に対し,

 $\exists U \subset X : \text{open}, \quad \exists V \subset Y : \text{open}, \quad (x_{\alpha \circ \beta(k')}, y_{\alpha \circ \beta(k')}) \in U \times V \subset W$

である. $(x_{\alpha(i)})_{i \in I}$ は $x_{\alpha \circ \beta(k')}$ に収束するから,

$$\exists j_0 \in J, \quad \forall j \geq j_0, \quad x_{\alpha(j)} \in U$$

となる. $(y_{\alpha\circ\beta(k)})_{k\in K}$ は $y_{\alpha\circ\beta(k')}$ に収束するから,

$$\exists k_0 \in K, \quad \forall k \ge k_0, \quad y_{\alpha \circ \beta(k)} \in V$$

となる. $\beta: K \to J$ は cofinal から

$$\exists k_1 \in K$$
, $j_0 \leq \beta(k_1)$

であり、Kの有向性から

$$\exists k_2 \in K, \quad k_0 \le k_2, k_1 \le k_2$$

である. このとき任意の $k \ge k_2$ に対して $(x_{\alpha\circ\beta(k)},y_{\alpha\circ\beta(k)}) \in U \times V$ となっている. よって, $(x_{\alpha\circ\beta(k)},y_{\alpha\circ\beta(k)})_{k\in K}$ は $(x_{\alpha\circ\beta(k')},y_{\alpha\circ\beta(k')})$ に収束する. $k'\in K$ の固定を外せば,self-convergence がわかる.

したがって $X \times Y$ の任意の net が self-convergent subnet をもち, $X \times Y$ はネーター空間となる.

参考文献

- [1] Jean Goubault-Larrecq. 2016. *Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology*. Cambridge University Press, New York, NY, USA.
- [2] Jean Goubault-Larrecq, On Noetherian Spaces, http://www.lsv.fr/Publis/PAPERS/PDF/JGL-lics07.pdf, 2007.
- [3] Jean Goubault-Larrecq, *Noetherian Spaces*, http://www.lsv.fr/~goubault/ccc14.pdf, 2014.
- [4] Jean Goubault-Larrecq, A few things on Noetherian spaces, http://www.lsv.fr/~goubault/SummerTopologyConference2016/noetherian.pdf, 2016.
- [5] Henno Brandsma, *Nets, cluster points and the Tychonoff theorem*, http://at.yorku.ca/p/a/c/a/13.pdf, 2003.