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Abstract

In Pedersen [6], Radon-Nikodym theorem for Radon measures is
proved under the assumption that the locally compact space is σ-
compact. But in fact, we can show the theorem and the duality of L1

and L∞ with a bit modification without σ-compactness.

1 Decomposable Measures

Def 1.1 (decomposability). Let (X,F) be a measurable space. A measure µ
on (X,F) is called decomposable if there is a family {Xj}j∈J of disjoint
measurable sets satisfying the following:

1.
⊔

j∈J Xj = X.

2. µ(Xj) < ∞ for every j ∈ J .

3. E ⊂ X is measurable if and only if E ∩Xj is measurable for all j ∈ J .

4. µ(E) =
∑

j∈J µ(E ∩Xj) for any measurable E of finite measure.

e.g.) In this paper we adopt that a Radon measure is a locally finite
outer regular Borel measure which is inner regular for open sets. Strongly
quasi-invariant measures on homogeneous spaces, containing Haar measures
on locally compact groups, are decomposable because those spaces are the
disjoint union of σ-compact clopen subsets {Xj}j∈J and they satisfy µ(E) =∑

j∈J µ(E ∩Xj) for any Borel subset E of finite measure by outer regularity.
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Thm 1.2 (Radon-Nykodym). Let µ be a decomposable measure on (X,F)
with decomposition {Xj}j∈J , and ν an absolutely continuous measure with
respect to µ. There exists a measurable function m : X → [0,∞] such that∫
E
mdµ = ν(E) for every E that is σ-finite for µ, and m < ∞ on each Xj

that is σ-finite for ν.

Proof. For every j ∈ J , pick a measurable Yj ⊂ Xj that is σ-finite for ν and

µ(Yj) = sup{µ(E) | E ⊂ Xj : σ-finite for ν}.

We can see the existence of Yj by taking a countable union of σ-finite sets
for ν in Xj that approximate the right hand side. In particular, we may take
Yj = Xj for all Xj that is σ-finite for ν.

By Radon-Nikodym theorem for σ-finite measures, there exists a measur-
able mj : Yj → [0,∞) such that

∫
E
mjdµ = ν(E) for every E ⊂ Yj. Define

a function m on X as m = mj on every Yj and m = ∞ otherwise. Then m
is measurable because for F ⊂ [0,∞], m−1(F ) is measurable ⇐⇒ m−1

j (F )
and Xj \Yj are measurable for all j ∈ J . By the choice of Yj, we have m < ∞
on each Xj that is σ-finite for ν.

For a measurable set E ⊂ Xj \ Yj, µ(E) = ν(E) = 0 or µ(E) > 0
and E is not σ-finite for ν. Indeed, if E is σ-finite for ν, then µ(E) =
µ(Yj ∪ E) − µ(Yj) = 0 because Yj ∪ E is also σ-finite for ν; if E is not
σ-finite for ν, then µ(E) has to be positive by absolute continuity. Thus∫
E
mdµ = ν(E) for E ⊂ Xj \ Yj.
For each σ-finite E for µ, E∩

⊔
j /∈J0 Xj is null for some at most countable

set J0 ⊂ J by µ(E) =
∑

j∈J µ(E ∩Xj). Therefore we obtain by MCT that∫
E

mdµ =

∫
E∩

⊔
j∈J0

Xj

mdµ
(MCT )
=

∑
j∈J0

∫
E∩Xj

mdµ

=
∑
j∈J0

(∫
E∩Yj

mjdµ+

∫
E∩Xj\Yj

∞dµ

)
=
∑
j∈J0

(ν(E ∩ Yj) + ν(E ∩Xj \ Yj)) = ν(E).

You can find this theorem in Folland [2, Exercise 3.15].
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Thm 1.3 (duality of L1 and L∞). Let (X,F, µ) be a decomposable measure
space. Then we have an isometric isomorphism

L∞(µ) L1(µ)∗.

ϕ
∫
· ϕdµ

I : ∼=

∈ ∈

Proof. I is well-defined and ∥I(ϕ)∥ ≤ ∥ϕ∥∞ by Hölder’s inequality.

(isometry) Pick a nonzero ϕ ∈ L∞(µ). For each 0 < η < ∥ϕ∥∞, {|ϕ| > η}
is not null, so there is an E ⊂ {|ϕ| > η} of finite positive measure by
decomposability. Then f := (ϕ̄/ |ϕ|)χE satisfies ∥f∥1 = µ(E) < ∞ and∫
fϕdµ =

∫
E
|ϕ| dµ ≥ ηµ(E). Thus we get ∥I(ϕ)∥ ≥

∫
fϕdµ/ ∥f∥1 ≥ η, and

hence ∥I(ϕ)∥ ≥ ∥ϕ∥∞.

(surjection) Take a decomposition {Xj}j∈J for µ and a φ ∈ L1(µ)∗. φ defines
a complex finite measure νj on eachXj by νj(E) = φ(χE), which is absolutely
continuous with respect to µ. Note that the finiteness follows from |φ(χE)| ≤
∥φ∥µ(E), and σ-additivity from continuity of φ.

By Jordan decomposition and Radon-Nikodym theorem for finite mea-
sures, there exists a measurable function ϕj : Xj → C such that∫

E

ϕjdµ = νj(E) = φ(χE)

for any measurable E ⊂ Xj, which implies that
∫
Xj

fϕjdµ = φ(f) for every

f ∈ L1(Xj, µ). Here we may assume |ϕj| ≤ ∥φ∥ on Xj because if E :=
{|ϕj| > ∥φ∥} is not null, we have

∥φ∥µ(E) <

∫
E

|ϕj| dµ = φ

(
ϕj

|ϕj|
χE

)
≤ ∥φ∥µ(E),

a contradiction.
Define a function ϕ on X as ϕ = ϕj on every Xj, which is measurable

by decomposability of µ and bounded by ∥φ∥ as shown above. For each
f ∈ L1(µ), since f is supported in a σ-finite set, {f ̸= 0}∩

⊔
j /∈J0 Xj is null for

some at most countable set J0 ⊂ J . Then it follows from f
(DCT )
=

∑
j∈J0 fχXj
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in Li(µ) that

φ(f) =
∑
j∈J0

φ(fχXj
) =

∑
j∈J0

∫
Xj

fϕjdµ

(DCT )
=

∫
⊔

j∈J0
Xj

fϕdµ =

∫
fϕdµ,

therefore φ = I(ϕ).

2 Local Measurability

Def 2.1. Let µ be a Radon measure on a locally compact space X with Borel
σ-algebra B, and B1 the subset of all Borel sets of finite measure.

E ⊂ X is said to be locally Borel if E ∩K is Borel for any K ∈ B1.
Locally Borel sets forms a σ-algebra F. A function on X is called locally
Borel if its inverse image of each Borel set is locally Borel.

A locally Borel function is called locally integrable if it is integrable with
respect to µ on each compact subset. This makes sense because the restriction
of a locally Borel function on a compact set is a Borel function.

A subset E of X is called locally null if E ∩K is null for any K ∈ B1.
A statement on X is said to hold locally almost everywhere (l.a.e.) if
it is true except on a locally null set.

Note that the local measurability depends on µ.
Although we defined local measurability only for Radon measures, it is in

fact defined for an arbitrary measure space. If you want to know more about
it, I recommend you to look up in Folland [2, Exercise 1.16, 1.22].

Recall. Let C be the family of all compact sets in X. Measurable sets with
respect to a Radon integral

∫
=
∫
dµ on Cc(X) are defined in Pedersen [6]

as follows. Define inner and outer measure of E ⊂ X by

µ∗(E) := sup{µ(C) | cpt C ⊂ E} = sup

{∫
∗
g χE ≥ g ∈ Cc(X)m

}
µ∗(E) := inf{µ(U) | open U ⊃ E} = inf

{∫ ∗
h χE ≤ h ∈ Cc(X)m

}
,
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and we put

M1 = {E ⊂ X | µ∗(E) = µ∗(E) < ∞}
M = {E ⊂ X | E ∩ C ∈ M1 ∀C ∈ C}.

As is proved in Pedersen [6], M1 = {E ∈ M | µ∗(E) < ∞}, and µ∗ and µ∗

are measures on (X,M). It is trivial that µ∗|B = µ by outer regularity, and
B1 = B ∩M1. According to locally Borel terminology, it might be good to
call elements in M ‘locally Lebesgue.’

Lem 2.2. The locally Borel sets (∈ F) are contained in M, and hence µ∗
and µ∗ define measures on (X,F).

Proof. Let E ∈ F, then C ⊂ B1 implies E ∩ C ∈ B1 ⊂ M1 for every C ∈ C,
hence E ∈ M.

Lem 2.3. i) E ⊂ X is null if and only if µ∗(E) = 0.

ii) E ∈ M is locally null if and only if µ∗(E) = 0.

Proof.

i) If E is null, then there is a Borel set N ⊃ E such that µ(N) = 0. By outer
regularity, µ∗(E) ≤ µ∗(N) = µ(N) = 0.

Conversely if µ∗(E) = 0, then µ(N) = 0 for some countable intersection
N of open sets containing E, hence E is null.

ii) If E ∈ M is locally null, then C = E ∩ C is null for any compact C ⊂ E,
hence µ∗(E) = 0.

Conversely if µ∗(E) = 0, then we have µ∗(E ∩K) = µ∗(E ∩K) = 0 for
any K ∈ B1 by E ∩K ∈ M1, hence E ∩K is null.

Prop 2.4. We have for 1 ≤ p < ∞ isometric isomorphisms

Lp(µ) ∼= Lp(µ∗,B) ∼= Lp(µ∗,F) ∼= Lp(µ∗,F) ∼= Lp(µ∗,M) ∼= Lp(µ∗,M).

Proof. By B ⊂ F ⊂ M and µ∗ ≤ µ∗, we have a commutative diagram of
norm decreasing operators

Lp(µ) Lp(µ∗,F) Lp(µ∗,M)

Lp(µ∗,B) Lp(µ∗,F) Lp(µ∗,M)

I
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where the horizontal arrows are isometric embeddings. It suffices to show
surjective isometry for nonnegative functions. Moreover, we may assume
p = 1 because ∥f∥pp = ∥fp∥1 for nonnegative measurable f .

(isometry) Since
∫
χEdµ

∗ = µ∗(E) = µ∗(E) =
∫
χEdµ∗ for any E ∈ M1,∫

fdµ∗ =
∫
fdµ∗ holds for every f ∈ L1(µ∗,M)+. Thus I is an isometry,

which implies that all arrows in the diagram above are isometries.

(surjection) For any E ∈ M with µ∗(E) < ∞, there is a σ-compact F ∈ B1

such that µ(F ) = µ∗(E) i.e. µ∗(E \F ) = 0, which shows that for any simple
function f ∈ L1(µ∗,M)+, there is a simple function g ∈ L1(µ)+ such that
f = g l.a.e. Therefore approximation by simple functions proves that for
every f ∈ L1(µ∗,M)+ there exists g ∈ L1(µ)+ such that f = g l.a.e., hence
all the spaces are isometrically isomorphic to each other.

Def 2.5. By Prop(2.4), we redefine Lp(µ) as Lp(µ∗,F) for 1 ≤ p ≤ ∞.
L∞(µ) is the space of l.a.e.-bounded locally Borel functions, which can be
different from L∞(µ,B).

e.g.) Let X =
⊔

α<ω Rα be a disjoint union of uncountably many copies
{Rα}α<ω of R, where ω is the smallest uncountable ordinal. X has a Radon
measure µ given by Lebesgue measure on each component.

Pick a closed E = {0α ∈ Rα | α < ω}. Then µ∗(E) = ∞ and µ∗(E) = 0,
which shows that χE ̸= 0 in L∞(µ,B) but χE = 0 in L∞(µ∗,B).

3 Decomposition of Radon measures

Def 3.1. Let µ be a Radon measure on X. A family F of disjoint nonempty
compact subsets of X is called a concassage (a French word meaning ‘crush-
ing’) of µ if it satisfies the following:

1. For any open set U and F ∈ F , µ(U ∩ F ) > 0 if U ∩ F is nonvoid.

2. F0 := X \
⊔

F is locally null.

Let’s call a family F of disjoint nonempty compact subsets a preconcassage
(my own terminology) of µ if it has the property 1.
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Note that the empty family ∅ is a preconcassage of µ.
The definition above is according to Hewitt and Ross [5] theorem(11.39),

although they did not name the family F . The word concassage is found in
Gardner and Pfeffer [3, 4].

Lem 3.2. A preconcassage F of µ on X satisfies the following:

i) E ∩ F = ∅ for all but countable F ∈ F for every E ∈ M1.

ii) F0 := X \
⊔

F is locally Borel.

Proof.

i) Given E ∈ M1, we have an open set U ⊃ E of finite measure. By∑
F∈F µ(U ∩ F ) ≤ µ(U) < ∞ and µ(U ∩ F ) > 0 if U ∩ F ̸= ∅, U inter-

sects at most countable F ∈ F , so does E ⊂ U .

ii) For any K ∈ B1, there are by i) at most countable F ∈ F that intersects
K. Thus F0 ∩K = K \

⊔
F∈F (K ∩ F ) is a Borel set, which shows that F0 is

locally Borel.

Lem 3.3. Let C be a compact subset of X. There is a compact F ⊂ C such
that C \ F is null and µ(V ∩ F ) > 0 for any open V that intersects F .

Proof. Let U be the family of all null and relatively open subsets of C, then
U :=

∪
U is the maximal element in U (∵ It is clear that U is relatively

open and U ∈ B1, and any compact subset of U , covered by finitely many
elements in U , is also null). Put F := C\U : compact. Suppose µ(V ∩F ) = 0
for an open set V in X, then µ(V ∩ C) = µ(V ∩ F ) + µ(V ∩ U) = 0 implies
V ∩ C ⊂ U i.e. V ∩ F = ∅. Thus F is what we desired.

Prop 3.4. Every Radon measure µ on X admits a concassage.

Proof. We may assume µ ̸= 0 since ∅ is a concassage of µ = 0.
Let F be the set of all preconcassages of µ, ordered by inclusion. F is

inductively ordered because every totally ordered subset F0 has an upper
bound

∪
F0 ∈ F . Thus there is a maximal preconcassage F ∈ F by Zorn’s

lemma.
Put F0 := X \

⊔
F , which is locally Borel by Lem(3.2.ii). It suffices to

show µ∗(F0) = 0 by Lem(2.3). Suppose µ∗(F0) > 0, then there is a compact
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C ⊂ F0 of positive measure. By Lem(3.3) we have a compact F1 ⊂ C
of positive measure such that µ(U ∩ F1) > 0 for any open U of nonvoid
intersection with F1. This shows that F ∪ {F1} is a preconcassage of µ,
which contradicts the maximality of F .

Thm 3.5. µ∗ on (X,F) is decomposable, and so is µ∗ on (X,M).

Proof. Pick a concassage F of µ and put F0 := X \
⊔

F . We prove that
F ∪ {F0} gives a decomposition of (X,F, µ∗).

1. It is evident that F0 ⊔
⊔

F = X.

2. 0 < µ∗(F ) = µ(F ) < ∞ for all F ∈ F ⊂ C, and µ∗(F0) = 0 by Lem(2.3).

3. Since F ∪{F0} ⊂ F, E ∩F and E ∩F0 are locally Borel for all F ∈ F and
E ∈ F.

Conversely assume E ⊂ X satisfies that E ∩ F0 and E ∩ F are locally
Borel (∀F ∈ F ). (Since F ⊂ B1, in fact E ∩ F ∈ B1 for each F ∈ F .)
Given C ∈ B1 there are at most countable F ∈ F such that F ∩ C ̸= ∅, so
it follows that

E ∩ C = ((E ∩ F0) ∩ C) ⊔
⊔
F∈F

((E ∩ F ) ∩ C) ∈ B1,

hence E ∈ F.

4. Pick an E ∈ F with µ∗(E) < ∞. There is a σ-compact, hence Borel, subset
K ⊂ E such that µ(K) = µ∗(E). Since K ∩ F is void for all but countably
many F ∈ F and F0 is locally null, we obtain

µ∗(E) = µ(K) = µ(K ∩ F0)
(=0)

+
∑
F∈F

µ(K ∩ F )

≤ µ∗(E ∩ F0)
(=0)

+
∑
F∈F

µ∗(E ∩ F ) ≤ µ∗(E)

i.e. µ∗(E) = µ∗(E ∩ F0) +
∑

F∈F µ∗(E ∩ F ).

A similar proof — obtained by replacing B1,F, and C ∈ B1 by M1,M,
and C ∈ C respectively — is valid for (X,M, µ∗).
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Prop 3.6. For any M-measurable function f on X, there exists a locally
Borel function g such that f = g l.a.e.

Proof. Fix a M-measurable function f on X and a concassage F of µ. For
each F ∈ F , f |F is pointwisely approximated by M1-measurable simple
functions, which are equal to Borel simple functions a.e. So f |F is pointwisely
approximated by Borel simple functions a.e., and hence there is a Borel
function gF on F such that f |F = gF a.e. (i.e. {f |F ̸= gF} is null).

Define a function g on X by g = gF on F ∈ F and g = 0 on F0, which
is locally Borel because so is componentwisely. Since F0 is locally null and
any compact subset of {f ̸= g} intersects at most countable F ∈ F , we get
f = g l.a.e.

Prop 3.7. We have an isometric isomorphism

L∞(µ) = L∞(µ∗,F) ∼= L∞(µ∗,M).

Proof. F ⊂ M induces an isometric embedding L∞(µ) ↪→ L∞(µ∗,M). Sur-
jectivity follows from Prop(3.6), hence this is an isometric isomorphism.

Thm 3.8 (duality of L1 and L∞ for Radon measures). For a Radon measure
µ on X, we have L∞(µ) ∼= L1(µ)∗.

Proof. This is the direct application of the duality theorem(1.3) to (X,F, µ∗)
which is found to be decomposable by Thm(3.5).

In order to treat several measures, we denote B1,F, and M for µ by
B1

µ,Fµ, and Mµ respectively.

Thm 3.9 (Radon-Nikodym for Radon measures). Let µ and ν be Radon
measures on X, and ν absolutely continuous with respect to µ.

i) Every µ-locallly null set is also ν-locally null.

ii) Fµ ⊂ Mµ ⊂ Mν, and hence ν∗ defines absolutely continuous measures
with respect to µ∗ for σ-algebras Fµ and Mµ.
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iii) There exists a µ-locally integrable function m : X → [0,∞) such that∫
E
mdµ∗ = ν∗(E) for any E ∈ Mµ that is σ-finite for µ∗. m is unique

up to µ-l.a.e., which is called the Radon-Nikodym derivative and de-
noted by dν

dµ
.

iv)
∫
E
mdµ∗ = ν∗(E) for all µ∗-σ-finite E ∈ Mµ, containing B1

µ.

v) Fν ⊂ Mµ, hence for any f ∈ L1(ν), fm ∈ L1(µ) is well-defined and∫
fmdµ =

∫
fdν.

Proof.

i) Let E ⊂ X be a µ-locallly null set. For K ∈ B1
ν , we have a σ-compact

C ⊂ K with ν(K) = ν(C). Then µ∗(E ∩ C) = 0 implies ν∗(E ∩ K) ≤
ν∗(E ∩ C) + ν(K \ C) = 0.

ii) For E ∈ Mµ and C ∈ C, there are σ-compact set K ⊂ E ∩ C and Gδ set
U ⊃ E ∩ C such that µ(U \K) = 0, whence ν(U \K) = 0 shows E ∈ Mν .

iii.existence) Fix a concassage F of µ. We now know that F0 ∈ Fµ ⊂ Mν is
locally null not only for µ but also for ν. By Radon-Nikodym theorem(1.2),
there is a µ-locally Borel functionm : X → [0,∞] such that

∫
E
mdµ∗ = ν∗(E)

for every E ∈ Mµ that is σ-finite for µ∗. Since every F ∈ F and F0 are µ∗-
finite, m < ∞ on X. Local integrability of m comes from∫

C

mdµ =

∫
C

mdµ∗ = ν∗(C) = ν(C) < ∞

for each C ∈ C because µ∗ and µ∗ agree on M1
µ.

iii.uniqueness) Suppose m is as in the proof of existence, and m′ is such an-
other Mµ-measurable function. Then {m ̸= m′} ∈ Mµ, and for any compact
C ⊂ {m ̸= m′} we have∫

C

(m−m′)dµ = ν(C)− ν(C) = 0,

which means that m = m′ µ-l.a.e.

iv) It suffices to show for E ∈ M1
µ. In the same way as ii), we have ν∗(E) =

ν∗(E), so that ∫
E

mdµ∗ =

∫
E

mdµ∗ = ν∗(E) = ν∗(E).
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v) Pick E ∈ Fν , then it follows for any C ∈ C that F ∩C is a Borel subset of
C, contained in B1

µ ⊂ M1
µ. Thus E ∈ Mµ.

So fm is Mµ-measurable and
∫
fmdµ∗ =

∫
fdν∗ holds for every ν-locally

measurable simple function in L1(ν) by iv). This shows that null functions
are mapped to null functions, so fm ∈ L1(µ) is well- defined, and the integral
equality holds for any f ∈ L1(ν) because simple functions are dense in L1(ν).
Moreover we have

∫
fmdµ =

∫
fdν since we can take representatives from

Borel functions.

Prop 3.10 (chain rule). Assume that λ, µ and ν are Radon measures on X
such that ν ≪ µ ≪ λ. Then

dν

dµ

dµ

dλ
=

dν

dλ
λ-l.a.e.

Proof. Now dν
dµ

is measurable with respect to Fµ ⊂ Mλ, and
dµ
dλ

is measurable

with respect to Fλ ⊂ Mλ. Hence
dν
dµ

dµ
dλ

is Mλ-measurable.

For any compact C ⊂ X, it follows from µ-local integrability of dν
dµ

and

Radon-Nikodym theorem(3.9.v) that

ν(C) =

∫
C

dν

dµ
dµ =

∫
C

dν

dµ

dµ

dλ
dλ,

whence

ν∗(E) =

∫
E

dν

dµ

dµ

dλ
dλ∗

for any E ∈ Mλ with λ∗(E) < ∞. Therefore dν
dµ

dµ
dλ

= dν
dλ

λ-l.a.e. by uniqueness
of the Radon-Nikodym derivative.
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