2018 解析 1 演習 第 1 回

2018年4月13日

1 問題

1. 次の集合を求めよ

$$(1) \bigcap_{n=1}^{\infty} (0, 1 + \frac{1}{n}) \quad (2) \bigcap_{n=1}^{\infty} (0, 1 + \frac{1}{n}] \quad (3) \bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{n}) \quad (4) \bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{n}]$$

2. $X \neq \emptyset$ とする. X の部分集合全体からなる集合族 2^X は σ 加法族であることを示せ. また $\{\emptyset, X\}$ が σ 加法族であることを示せ.

3. X を非可算集合とする. $\mathcal{F}=\{A\subset X\mid A$ または A^c が高々可算 $\}$ と定めると \mathcal{F} は σ 加法族となることを示せ.

4.Xの部分集合列 $\{E_n\}$ に対して、上極限集合 $\limsup_{n\to\infty} E_n$ と下極限集合 $\liminf_{n\to\infty} E_n$ はそれぞれ

$$\limsup_{n \to \infty} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n, \qquad \liminf_{n \to \infty} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$

で定義される.以下の問いに答えよ.

 $(1)\liminf_{n\to\infty} E_n \subset \limsup_{n\to\infty} E_n$ を示せ.

 $n\to\infty$ $n\to\infty$ (2)X の部分集合 A,B に対して $E_{2n}=A,E_{2n-1}=B$ と置くとき, E_n の上極限集合と下極限集合はそれぞれ 何か.

2 解答

1. 次の集合を求めよ

$$(1) \bigcap_{n=1}^{\infty} (0,1+\frac{1}{n}) \quad (2) \bigcap_{n=1}^{\infty} (0,1+\frac{1}{n}] \quad (3) \bigcup_{n=1}^{\infty} (0,1-\frac{1}{n}) \quad (4) \bigcup_{n=1}^{\infty} (0,1-\frac{1}{n}]$$

2.1 Answer

(1) (0,1]

Proof. $A:=\bigcap_{n=1}^{\infty}(0,1+\frac{1}{n})$ とおく.

任意の $n \in \mathbb{N}$ に対して, $(0,1] \subset (0,1+\frac{1}{n})$ であるので,

$$(0,1] \subset \bigcap_{n=1}^{\infty} (0,1+\frac{1}{n}) = A$$

逆に, $x \in A$ とすると, 任意の $n \in \mathbb{N}$ に対し

$$0 < x < 1 + \frac{1}{n} \quad \cdots \quad (*)$$

もし、x>1 ならば、x-1>0 なので、アルキメデスの原理から、十分大きな $n_o\in\mathbb{N}$ に対し、

$$x-1>\frac{1}{n_0}$$
つまり $x>1+\frac{1}{n_0}$ となり、これは (*) に矛盾

 $\therefore 0 < x \le 1 \supset \sharp \emptyset, \qquad \therefore A \subset (0,1]$

以上から,
$$A=(0,1]$$

(2)(0,1](1)と同様の議論をすれば良い.

(3) (0,1)

Proof.
$$A:=\bigcup_{n=1}^{\infty}(0,1-\frac{1}{n})$$
 とおく.

任意の $n \in \mathbb{N}$ に対して $(0, 1 - \frac{1}{n}) \subset (0, 1)$ なので,

$$A \subset (0,1)$$

逆の包含関係を示す. 0 < x < 1 ならば、 1 - x > 0 より、十分大きな $n \in \mathbb{N}$ をとって、

$$1 - x > \frac{1}{n}$$

$$0 < x < 1 - \frac{1}{n}$$

なので

$$x \in \bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{n})$$

よって

$$(0,1) \subset A$$

両方の包含関係が示せたので(0,1) = A

(4) (0,1)

Proof.
$$A := \bigcup_{n=1}^{\infty} (0, 1 - \frac{1}{n}]$$
 とおく.

Proof. $A:=\bigcup_{n=1}^\infty (0,1-\frac{1}{n}]$ とおく。 任意の $n\in\mathbb{N}$ に対して $(0,1-\frac{1}{n}]\subset (0,1)$ なので,

$$A \subset (0,1)$$

一方

$$(0,1) = \bigcup_{n=1}^{\infty} (0,1-\frac{1}{n}) \quad (\because (3) \text{ の結果})$$

$$\subset \bigcup_{n=1}^{\infty} (0,1-\frac{1}{n}] = A$$

以上から両方の包含関係が示せたので(0,1) = A

2.2

2. $X \neq \emptyset$ とする. X の部分集合全体からなる集合族 2^X は σ 加法族であることを示せ. また $\{\emptyset, X\}$ が σ 加 法族であることを示せ.

2.2.1 Answer

- $(1)2^X$ について、 σ 加法族の3つの定義を満たしているか確認する.
- (i) $\emptyset \in 2^X$ (: 集合 X は空集合を含む)
- (ii) $A \in 2^X$ の時, A^c も X の部分集合なので, $A^c \in 2^X$
- $(iii)A_n \in 2^X (n \in \mathbb{N})$ の時,

$$\bigcup_{n=1}^{\infty}A_{n}=\{x\in X\mid$$
ある $n\in\mathbb{N}$ が存在して $x\in A_{n}\}$

は X の部分集合なので、 $\bigcup_{n=1}^{\infty} A_n \in 2^X$

よって 2^X は σ 加法族.

- (2) $\{\emptyset, X\}$ について、 σ 加法族の3つの定義を満たしているか確認する.
- (i) $\emptyset \in \{\emptyset, X\}$
- $(ii)A \in \{\emptyset, X\}$ とする、この時、 $A = \emptyset$,or A = X

$$A = \emptyset$$
 ならば $A^c = X \in \{\emptyset, X\}$

$$A = X$$
 ならば $A^c = \emptyset \in \{\emptyset, X\}$

3

 $A^c \in \{\emptyset, X\}$

 $(iii)A_n \in \{\emptyset, X\}(n \in \mathbb{N})$ とする

この時,全ての
$$n \in \mathbb{N}$$
 について, $A_n = \emptyset$ ならば $\bigcup_{n=1}^{\infty} A_n = \emptyset \in \{\emptyset, X\}$ 一方, $A_n = X$ なる $n \in \mathbb{N}$ が存在すれば

$$\bigcup_{n=1}^{\infty} A_n = X \in \{\emptyset, X\}$$

故に
$$\bigcup_{n=0}^{\infty} A_n \in \{\emptyset, X\}$$

2.3

3. X を非可算集合とする. $\mathcal{F}=\{A\subset X\mid A$ または A^c が高々可算 $\}$ と定めると \mathcal{F} は σ 加法族となることを 示せ.

2.3.1 Answer

F が σ 加法族の3つの定義を満たしているか確認する.

- (i) ∅ は高々可算集合なので ∅ ∈ *F*

$$(ii)A\in\mathcal{F}$$
 とする,この時 A または A^c は高々可算なので $A^c\in\mathcal{F}$ (iii) $A_n\in\mathcal{F}$ $(n\in\mathbb{N})$ とする. $A:=\bigcup_{n=1}^\infty A_n$ と置く.

もし全ての $n\in\mathbb{N}$ に対して A_n が高々可算ならば $\bigcup^\infty A_n$ も高々可算,よって $A\in\mathcal{F}$

一方で、ある $n_0\in\mathbb{N}$ に対して. A_{n_0} が高々可算でないとすると、 $A_{n_0}\in\mathcal{F}$ から $A_{n_0}{}^c$ は高々可算である.

De Morgan の法則より、
$$A^c = \bigcap_{n=1}^{\infty} A_n{}^c \subset A_{n_0}{}^c$$

したがって A^c は高々可算.

以上から, $A \in \mathcal{F}$

2.4

4.X の部分集合列 $\{E_n\}$ に対して、上極限集合 $\limsup E_n$ と下極限集合 $\liminf E_n$ はそれぞれ

$$\limsup_{n \to \infty} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n, \qquad \liminf_{n \to \infty} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n$$

で定義される.以下の問いに答えよ.

- (1)lim inf $E_n \subset \limsup E_n$ を示せ.
- $n\to\infty$ $n\to\infty$ (2)X の部分集合 A,B に対して $E_{2n}=A,E_{2n-1}=B$ と置くとき, E_n の上極限集合と下極限集合はそれぞれ 何か.

2.4.1 Answer

(1)

$$Proof. \ A := \underline{\lim}_{n \to \infty} E_n \ , \ B := \overline{\lim}_{n \to \infty} E_n \$$
とおく.

A の定義から,任意の $x\in A$ に対し, $x\in \bigcap_{k=1}^\infty\bigcup_{n=k}^\infty E_n$ より,ある $k_0\in \mathbb{N}$ が存在し, $x\in \bigcap_{n=k_0}^\infty E_n$

(2) 答
$$\lim_{n\to\infty} E_n = A \cap B$$
, $\overline{\lim}_{n\to\infty} E_n = A \cup B$

$$Proof.$$
 (i)下極限 $\varliminf_{n \to \infty} E_n$ について示す.
$$x \in \varliminf_{n \to \infty} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n \ \text{とすると}$$
 ある k_0 に対し, $x \in \bigcap_{n=k}^{\infty} E_n \ \therefore x \in E_n \ (n \ge k_0)$

ある
$$k_0$$
 に対し, $x \in \bigcap_{n=1}^{\infty} E_n$ $x \in E_n$ $(n \ge k_0)$

 $n \geq k_0$ の下で, n が偶数の時, $x \in A$ で, n が奇数の時, $x \in B$

 $\therefore x \in A \cap B$

よって
$$\underline{\lim} E_n \subset A \cap B$$

逆の包含関係を示す、各
$$n$$
 について、 E_n は A または B のいずれかなので、故に $A\cap B\subset \bigcap_{n=1}^\infty E_n\subset \bigcup_{k=1}^\infty \bigcap_{n=k}^\infty E_n=\varinjlim_{n\to\infty} E_n$ 以上から両方の包含関係が示せたので、 $\varinjlim_{n\to\infty} E_n=A\cap B$

(ii) $\overline{\lim}_{n\to\infty} E_n$ について示す.

各 n について, E_n は A または B のいずれかなので $E_n \subset A \cup B$

$$\{\ (\mathrm{ii})\ (\mathrm{ii})\ を通して常に \quad A\cap B\subset E_n\subset A\cup B\ \}$$
 よって $\bigcap_{k=1}^\infty\bigcup_{n=k}^\infty E_n\subset\bigcup_{n=1}^\infty E_n=A\cup B$ 逆の包含関係を示す. $x\in A\cup B$ とすると, $x\in A$ または $x\in B$

つまり $x \in E_{2n}$ または $x \in E_{2n-1}$

したがって任意の $k \in \mathbb{N}$ に対し, $x \in \bigcup_{n=k}^{\infty} E_n$

$$\therefore x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n = \overline{\lim}_{n \to \infty} E_n$$

以上から両方の包含関係が示せたので, $\overline{\lim}_{n \to \infty} E_n = A \cup B$